找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Life System Modeling and Intelligent Computing; International Confer Kang Li,Xin Li,George W. Irwin Conference proceedings 2010 Springer-Ve

[复制链接]
查看: 54072|回复: 63
发表于 2025-3-21 16:44:15 | 显示全部楼层 |阅读模式
书目名称Life System Modeling and Intelligent Computing
副标题International Confer
编辑Kang Li,Xin Li,George W. Irwin
视频video
丛书名称Communications in Computer and Information Science
图书封面Titlebook: Life System Modeling and Intelligent Computing; International Confer Kang Li,Xin Li,George W. Irwin Conference proceedings 2010 Springer-Ve
描述The 2010 International Conference on Life System Modeling and Simulation (LSMS 2010) and the 2010 International Conference on Intelligent Computing for Susta- able Energy and Environment (ICSEE 2010) were formed to bring together resear- ers and practitioners in the fields of life system modeling/simulation and intelligent computing applied to worldwide sustainable energy and environmental applications. A life system is a broad concept, covering both micro and macro components ra- ing from cells, tissues and organs across to organisms and ecological niches. To c- prehend and predict the complex behavior of even a simple life system can be - tremely difficult using conventional approaches. To meet this challenge, a variety of new theories and methodologies have emerged in recent years on life system mod- ing and simulation. Along with improved understanding of the behavior of biological systems, novel intelligent computing paradigms and techniques have emerged to h- dle complicated real-world problems and applications. In particular, intelligent c- puting approaches have been valuable in the design and development of systems and facilities for achieving sustainable energy and a sust
出版日期Conference proceedings 2010
关键词ant colonies; biochips; biological systems simulation; biorobotics; data mining; fuzzy system; knowledge d
版次1
doihttps://doi.org/10.1007/978-3-642-15859-9
isbn_softcover978-3-642-15858-2
isbn_ebook978-3-642-15859-9Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer-Verlag Heidelberg 2010
The information of publication is updating

书目名称Life System Modeling and Intelligent Computing影响因子(影响力)




书目名称Life System Modeling and Intelligent Computing影响因子(影响力)学科排名




书目名称Life System Modeling and Intelligent Computing网络公开度




书目名称Life System Modeling and Intelligent Computing网络公开度学科排名




书目名称Life System Modeling and Intelligent Computing被引频次




书目名称Life System Modeling and Intelligent Computing被引频次学科排名




书目名称Life System Modeling and Intelligent Computing年度引用




书目名称Life System Modeling and Intelligent Computing年度引用学科排名




书目名称Life System Modeling and Intelligent Computing读者反馈




书目名称Life System Modeling and Intelligent Computing读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:13:16 | 显示全部楼层
发表于 2025-3-22 02:10:49 | 显示全部楼层
发表于 2025-3-22 06:09:51 | 显示全部楼层
Particle Swarm Optimization Based Clustering: A Comparison of Different Cluster Validity Indicesctively. By applying the proposed algorithm to a number of artificial synthesized data and UCI data, the performance of different validity indices are compared in terms of clustering accuracy and robustness at length.
发表于 2025-3-22 10:58:52 | 显示全部楼层
发表于 2025-3-22 15:12:09 | 显示全部楼层
Application of Radial Basis Function Neural Network in Modeling Wastewater Sludge Recycle Systemulation shows good estimates for the sludge recycling flowrate. So the idea and model is a good way to the sludge recycle flow rate control. It is a meaningful Evolutionary Neural Network application in industry.
发表于 2025-3-22 20:32:12 | 显示全部楼层
A General Framework for High-Dimensional Data Reduction Using Unsupervised Bayesian Modelin unsupervised Bayesian literature by using appropriate abundance prior distributions. The posterior distributions of the unknown model parameters are then derived. Experimental results on hyperspectral data demonstrate useful properties of the proposed reduction algorithm.
发表于 2025-3-22 21:32:57 | 显示全部楼层
发表于 2025-3-23 02:20:54 | 显示全部楼层
Aplication of the Single Neuron PID Controller on the Simulated Chassis Dynamometerm using single neuron self-adaptive PID algorithm was simulated and laboratory dates obtained on the improved chassis dynamometer was compared with datas conducted on the real road. Results show that: the single neuron self-adaptive PID controller has simpler structure, stronger self-adaptive ability and can replace the traditional PID controller.
发表于 2025-3-23 08:01:04 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-28 07:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表