找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Lie Groups, Differential Equations, and Geometry; Advances and Surveys Giovanni Falcone Book 2017 Springer International Publishing AG 2017

[复制链接]
楼主: concession
发表于 2025-3-23 13:02:02 | 显示全部楼层
发表于 2025-3-23 14:38:26 | 显示全部楼层
发表于 2025-3-23 21:23:07 | 显示全部楼层
发表于 2025-3-24 01:20:30 | 显示全部楼层
Remarks on Infinite-Dimensional Representations of the Heisenberg Algebra,of the Heisenberg Lie algebra, we sketch the essential features of this interaction, distinguishing in particular the cases of . and . representations. While integrable representations are well understood, nonintegrable representations are quite mysterious objects. We present here a short and didact
发表于 2025-3-24 05:11:58 | 显示全部楼层
发表于 2025-3-24 08:08:08 | 显示全部楼层
Cohomology Operations Defining Cohomology Algebra of the Loop Space, sequence of operations ..: ..(.). → ..(.), . = 2, 3, . which form a minimal ..-algebra (..(.), {..}). This structure defines on the bar construction ..(.) a correct differential .. so that (..(.), ..) gives cohomology modules of the loop space ..(.). In this paper we construct algebraic operations
发表于 2025-3-24 10:57:08 | 显示全部楼层
发表于 2025-3-24 18:09:15 | 显示全部楼层
An Optimal Control Problem for a Nonlocal Problem on the Plane,irst order on the plane with nonlocal Bitsadze–Samarski boundary conditions. A theorem of the existence and uniqueness of a generalized solution in the space . is proved for quasilinear differential equations; necessary conditions of optimality are obtained in terms of the principle of maximum; the
发表于 2025-3-24 20:09:36 | 显示全部楼层
On the Geometry of the Domain of the Solution of Nonlinear Cauchy Problem,iven functions described the initial conditions are defined on a closed interval. We study also a variant of the inverse problem of the Cauchy problem and prove that the considered inverse problem has a solution under certain regularity condition. We illustrate the Cauchy and the inverse problems in
发表于 2025-3-24 23:40:11 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-28 10:38
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表