找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Lectures on the Geometry of Poisson Manifolds; Izu Vaisman Book 1994 Springer Basel AG 1994 Algebra.Algebroid.Theoretical physics.calculus

[复制链接]
查看: 13924|回复: 45
发表于 2025-3-21 18:02:04 | 显示全部楼层 |阅读模式
书目名称Lectures on the Geometry of Poisson Manifolds
编辑Izu Vaisman
视频video
丛书名称Progress in Mathematics
图书封面Titlebook: Lectures on the Geometry of Poisson Manifolds;  Izu Vaisman Book 1994 Springer Basel AG 1994 Algebra.Algebroid.Theoretical physics.calculus
出版日期Book 1994
关键词Algebra; Algebroid; Theoretical physics; calculus; differential geometry; foliation; geometry; manifold; mec
版次1
doihttps://doi.org/10.1007/978-3-0348-8495-2
isbn_softcover978-3-0348-9649-8
isbn_ebook978-3-0348-8495-2Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Basel AG 1994
The information of publication is updating

书目名称Lectures on the Geometry of Poisson Manifolds影响因子(影响力)




书目名称Lectures on the Geometry of Poisson Manifolds影响因子(影响力)学科排名




书目名称Lectures on the Geometry of Poisson Manifolds网络公开度




书目名称Lectures on the Geometry of Poisson Manifolds网络公开度学科排名




书目名称Lectures on the Geometry of Poisson Manifolds被引频次




书目名称Lectures on the Geometry of Poisson Manifolds被引频次学科排名




书目名称Lectures on the Geometry of Poisson Manifolds年度引用




书目名称Lectures on the Geometry of Poisson Manifolds年度引用学科排名




书目名称Lectures on the Geometry of Poisson Manifolds读者反馈




书目名称Lectures on the Geometry of Poisson Manifolds读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:44:44 | 显示全部楼层
Izu Vaismaniable in a multivariate feedback system. Applications to financial and economic time series data are used to investigate the effectiveness of the new index by power contribution analysis, and confirm that applying our indexation method to markets with insufficient information, such as fast-growing o
发表于 2025-3-22 01:26:00 | 显示全部楼层
发表于 2025-3-22 04:57:51 | 显示全部楼层
发表于 2025-3-22 09:00:04 | 显示全部楼层
An Introduction to Quantization,The present chapter is intended to provide some further important motivation for the study of the .-cohomology of Poisson manifolds. Namely, .-cohomological obstructions appear in the problem of the . of Poisson manifolds.
发表于 2025-3-22 13:15:28 | 显示全部楼层
发表于 2025-3-22 17:40:00 | 显示全部楼层
Poisson Calculus, calculus here. It is based on the possibility to extend the Poisson bracket to 1-forms, as it was discovered by several authors independently [GD], [MM], etc. (See more references in [KSM2].) We shall denote by Λ. the space of differential forms of degree κ on a differentiable manifold ..
发表于 2025-3-23 00:17:47 | 显示全部楼层
Symplectic Realizations of Poisson Manifolds,efinition 7.2, and it turns out that this idea is fruitful and very important. It can be traced back to S. Lie [Lie], and, in our era, it appears in Karasev and Maslov [Kr], [KM1,2], then made precise by Weinstein [We3].
发表于 2025-3-23 05:14:23 | 显示全部楼层
Poisson-Lie Groups, then, . [Dr1], [Dr2]. The latter are not really groups, but noncommutative algebras obtained by a deformation quantization (Chapter 6) of Poisson-Lie groups. From the purely geometric viewpoint it is also completely natural to define and study Poisson-Lie groups.
发表于 2025-3-23 07:32:46 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 13:49
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表