找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Lectures on Sphere Arrangements – the Discrete Geometric Side; Károly Bezdek Book 2013 Springer International Publishing Switzerland 2013

[复制链接]
楼主: 弄碎
发表于 2025-3-23 11:03:40 | 显示全部楼层
发表于 2025-3-23 17:44:06 | 显示全部楼层
Károly Bezdekdjustment and debt management strategies. The question should not be whether such states have sufficient political will to make hard adjustment decisions; rather, the question is, given that adjustment is unavoidable, how can we explain the selection and implementation of two complementary adjustmen
发表于 2025-3-23 18:36:16 | 显示全部楼层
Károly Bezdekdjustment and debt management strategies. The question should not be whether such states have sufficient political will to make hard adjustment decisions; rather, the question is, given that adjustment is unavoidable, how can we explain the selection and implementation of two complementary adjustmen
发表于 2025-3-24 01:40:59 | 显示全部楼层
Unit Sphere Packings,e emphases are on the following five topics: the contact number problem (generalizing the problem of kissing numbers), lower bounds for Voronoi cells (studying Voronoi cells from volumetric point of view), dense sphere packings in Euclidean 3-space (studying a strong version of the Kepler conjecture
发表于 2025-3-24 04:22:17 | 显示全部楼层
发表于 2025-3-24 10:15:56 | 显示全部楼层
Contractions of Sphere Arrangements,res. The research on this fundamental topic started with the conjecture of E. T. Poulsen and M. Kneser in the late 1950s. In this chapter we survey the status of the long-standing Kneser–Poulsen conjecture in Euclidean as well as in non-Euclidean spaces.
发表于 2025-3-24 12:19:29 | 显示全部楼层
Proofs on Contractions of Sphere Arrangements,r dimensional. Second, we prove an analogue of the Kneser–Poulsen conjecture for hemispheres in spherical .-space. Third, we give a proof of a Kneser–Poulsen-type theorem for convex polyhedra in hyperbolic 3-space.
发表于 2025-3-24 17:56:30 | 显示全部楼层
发表于 2025-3-24 19:13:07 | 显示全部楼层
发表于 2025-3-25 00:58:47 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-22 18:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表