找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Lectures on Mathematical Theory of Extremum Problems; Igor Vladimirovich Girsanov,B. T. Poljak Book 1972 Springer-Verlag Berlin · Heidelbe

[复制链接]
楼主: 请回避
发表于 2025-3-25 03:57:00 | 显示全部楼层
发表于 2025-3-25 11:02:56 | 显示全部楼层
发表于 2025-3-25 12:02:26 | 显示全部楼层
Sufficient Extremum Conditions. Examples,We now apply the results of the preceding lecture to various problems.
发表于 2025-3-25 17:26:59 | 显示全部楼层
发表于 2025-3-25 20:52:11 | 显示全部楼层
Introduction,systematized and brought together under the heading of the ., with its innumerable applications to physics and mechanics. Attention was devoted principally to the analysis of . and . defined over the entire space or restricted to some smooth manifold. The extremum conditions in this case are the . (
发表于 2025-3-26 03:42:57 | 显示全部楼层
Supporting Hyperplanes and Extremal Points,e closed hyperplane . is called a . for A at the point x.. The geometric sense of a supporting hyperplane is quite simple: the set A lies on one side of the hyperplane and cuts it in one point x. (Fig. 5).
发表于 2025-3-26 05:40:43 | 显示全部楼层
发表于 2025-3-26 09:56:00 | 显示全部楼层
Calculation of Dual Cones,plication of the Dubovitskii-Milyutin theorem to determine necessary conditions for an extremum, it remains to show how one constructs dual cones, This we now proceed to do. Some results in this connection were presented in Lecture 5 (Lemmas 5.2 to 5.10).
发表于 2025-3-26 15:09:33 | 显示全部楼层
发表于 2025-3-26 18:35:42 | 显示全部楼层
Sufficient Extremum Conditions,re also sufficient. Of course, elementary examples show that in general this is not true. Nevertheless, we shall prove that, under certain additional assumptions, the necessary extremum conditions are also sufficient, in an important class of extremal problems — convex problems. Sufficient condition
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-13 06:39
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表