找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Lectures on Integrable Systems; Jens Hoppe Book 1992 Springer-Verlag Berlin Heidelberg 1992 Dynamische Systeme.Hamiltonian.Hamiltonian mec

[复制链接]
楼主: Awkward
发表于 2025-3-26 23:56:07 | 显示全部楼层
发表于 2025-3-27 04:15:46 | 显示全部楼层
发表于 2025-3-27 08:31:26 | 显示全部楼层
发表于 2025-3-27 12:32:02 | 显示全部楼层
Lectures on Integrable Systems978-3-540-47274-2Series ISSN 0940-7677
发表于 2025-3-27 15:44:56 | 显示全部楼层
Classical Integrability of the Calogero-Moser Systems,We have seen that if one defines an . × . matrix . as . one can write the equations of motion belonging to . in the form . where . is given by
发表于 2025-3-27 20:32:24 | 显示全部楼层
Algebraic Approach to ,, + ,/,, Interactions,Consider . Let us recall the situation for α = 0: . Without taking into account the boundary condition at 0, the eigenfunctions are . where the ..(.) are Hermite polynomials. Because of the boundary condition φ(0) = 0 only odd . (= 2. + 1) are allowed:
发表于 2025-3-27 22:42:52 | 显示全部楼层
发表于 2025-3-28 05:38:44 | 显示全部楼层
The Classical Non-Periodic Toda Lattice,Consider a system of . particles whose dynamics is governed by . (note that any interaction of the form . with . . > 0 leads to (6.1) by rescaling and shifting . . and .).
发表于 2025-3-28 08:19:25 | 显示全部楼层
Infinite Dimensional Toda Systems,Let us now use . → ∞ limits of gl(., ℂ) in the context of a concrete physical model, the periodic Toda chain:
发表于 2025-3-28 13:29:33 | 显示全部楼层
Differential Lax Operators,Instead of considering Lax pairs of infinite dimensional matrices (implying specific basis in vector spaces of countable dimension) one often looks at Lax equations . where . and . are differential operators of order . and ., respectively,
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-25 20:39
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表