找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Learning with the Minimum Description Length Principle; Kenji Yamanishi Book 2023 Springer Nature Singapore Pte Ltd. 2023 Minimum Descript

[复制链接]
楼主: Deleterious
发表于 2025-3-23 09:52:09 | 显示全部楼层
发表于 2025-3-23 13:51:22 | 显示全部楼层
,Information and Coding,and coding are equivalent through the Kraft inequality. The most primitive quantification of information is Shannon’s information, which is the optimal code-length when a probability distribution is known in advance. We introduce the notion of stochastic complexity (SC) as an extension of Shannon’s
发表于 2025-3-23 20:10:49 | 显示全部楼层
Parameter Estimation,tal task of statistical inference, which should be addressed preceding model selection, as focused on in the subsequent chapters. Therefore, this chapter can be thought of as a preliminary chapter for model selection in this book. The methods of the maximum likelihood estimation (MLE), maximum a pos
发表于 2025-3-24 00:12:19 | 显示全部楼层
发表于 2025-3-24 04:16:09 | 显示全部楼层
Latent Variable Model Selection,del selection in latent variable models; the latent stochastic complexity (LSC) and decomposed normalized maximum likelihood code-length (DNML). It is shown how DNML can be applied to model selection for typical latent variable model classes such as naïve Bayes models, latent Dirichlet allocation mo
发表于 2025-3-24 09:55:56 | 显示全部楼层
Sequential Prediction, reduced to the problem of minimizing the cumulative code-length when the code-length is calculated sequentially. We consider three types of prediction algorithms; maximum likelihood prediction algorithm, Bayesian prediction algorithm, and sequentially normalized maximum likelihood algorithm. We giv
发表于 2025-3-24 12:07:33 | 显示全部楼层
MDL Change Detection,e the MDL principle plays a key role in designing effective change detection algorithms. We classify the change detection issues into parameter change detection and latent structure change detection. Each of both issues is further classified to abrupt change detection and gradual change detection. W
发表于 2025-3-24 17:45:20 | 显示全部楼层
发表于 2025-3-24 19:54:57 | 显示全部楼层
发表于 2025-3-25 00:39:04 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 20:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表