找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Learning in the Absence of Training Data; Dalia Chakrabarty Book 2023 Springer Nature Switzerland AG 2023 Supervised Learning.Training Dat

[复制链接]
查看: 35426|回复: 35
发表于 2025-3-21 16:20:57 | 显示全部楼层 |阅读模式
书目名称Learning in the Absence of Training Data
编辑Dalia Chakrabarty
视频video
概述Describes a new reliable forecasting technique that works by learning the evolution-driving function.Presents a way of comparing two disparately-long time series datasets via a distance between graphs
图书封面Titlebook: Learning in the Absence of Training Data;  Dalia Chakrabarty Book 2023 Springer Nature Switzerland AG 2023 Supervised Learning.Training Dat
描述.This book introduces the concept of “bespoke learning”, a new mechanistic approach that makes it possible to generate values of an output variable at each designated value of an associated input variable. Here the output variable generally provides information about the system’s behaviour/structure, and the aim is to learn the input-output relationship, even though little to no information on the output is available, as in multiple real-world problems. Once the output values have been bespoke-learnt, the originally-absent training set of input-output pairs becomes available, so that (supervised) learning of the sought inter-variable relation is then possible. Three ways of undertaking such bespoke learning are offered: by tapping into system dynamics in generic dynamical systems, to learn the function that causes the system’s evolution; by comparing realisations of a random graph variable, given multivariate time series datasets of disparate temporal coverage; and by designing maximally information-availing likelihoods in static systems. These methodologies are applied to four different real-world problems: forecasting daily COVID-19 infection numbers; learning the gravitational m
出版日期Book 2023
关键词Supervised Learning; Training Data; Prediction given Test Data; Bayesian methods; Choosing priors on unk
版次1
doihttps://doi.org/10.1007/978-3-031-31011-9
isbn_softcover978-3-031-31013-3
isbn_ebook978-3-031-31011-9
copyrightSpringer Nature Switzerland AG 2023
The information of publication is updating

书目名称Learning in the Absence of Training Data影响因子(影响力)




书目名称Learning in the Absence of Training Data影响因子(影响力)学科排名




书目名称Learning in the Absence of Training Data网络公开度




书目名称Learning in the Absence of Training Data网络公开度学科排名




书目名称Learning in the Absence of Training Data被引频次




书目名称Learning in the Absence of Training Data被引频次学科排名




书目名称Learning in the Absence of Training Data年度引用




书目名称Learning in the Absence of Training Data年度引用学科排名




书目名称Learning in the Absence of Training Data读者反馈




书目名称Learning in the Absence of Training Data读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:53:06 | 显示全部楼层
发表于 2025-3-22 01:05:09 | 显示全部楼层
发表于 2025-3-22 05:26:19 | 显示全部楼层
发表于 2025-3-22 12:30:30 | 显示全部楼层
发表于 2025-3-22 16:56:35 | 显示全部楼层
发表于 2025-3-22 19:49:33 | 显示全部楼层
发表于 2025-3-22 23:58:30 | 显示全部楼层
发表于 2025-3-23 02:37:16 | 显示全部楼层
发表于 2025-3-23 07:56:24 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 05:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表