找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Learning in Non-Stationary Environments; Methods and Applicat Moamar Sayed-Mouchaweh,Edwin Lughofer Book 2012 Springer Science+Business Med

[复制链接]
查看: 39320|回复: 52
发表于 2025-3-21 18:57:23 | 显示全部楼层 |阅读模式
书目名称Learning in Non-Stationary Environments
副标题Methods and Applicat
编辑Moamar Sayed-Mouchaweh,Edwin Lughofer
视频video
概述Shows the state-of-the-art in dynamic learning, discussing advanced aspects and concepts.Presenting open problems and future challenges in this field.Examines the links between the different methods a
图书封面Titlebook: Learning in Non-Stationary Environments; Methods and Applicat Moamar Sayed-Mouchaweh,Edwin Lughofer Book 2012 Springer Science+Business Med
描述.Recent decades have seen rapid advances in automatization processes, supported by modern machines and computers. The result is significant increases in system complexity and state changes, information sources, the need for faster data handling and the integration of environmental influences. Intelligent systems, equipped with a taxonomy of data-driven system identification and machine learning algorithms, can handle these problems partially. Conventional learning algorithms in a batch off-line setting fail whenever dynamic changes of the process appear due to non-stationary environments and external influences. . .Learning in Non-Stationary Environments: Methods and Applications .offers a wide-ranging, comprehensive review of recent developments and important methodologies in the field. The coverage focuses on dynamic learning in unsupervised problems, dynamic learning in supervised classification and dynamic learning in supervised regression problems. A later section is dedicated to applications in which dynamic learning methods serve as keystones for achieving models with high accuracy. . .Rather than rely on a mathematical theorem/proof style, the editors highlight numerous fig
出版日期Book 2012
关键词Dynamic learning; Knowledge extraction; adaptive modeling; data streams; drifts and shifts; dynamic dimen
版次1
doihttps://doi.org/10.1007/978-1-4419-8020-5
isbn_softcover978-1-4899-9340-3
isbn_ebook978-1-4419-8020-5
copyrightSpringer Science+Business Media New York 2012
The information of publication is updating

书目名称Learning in Non-Stationary Environments影响因子(影响力)




书目名称Learning in Non-Stationary Environments影响因子(影响力)学科排名




书目名称Learning in Non-Stationary Environments网络公开度




书目名称Learning in Non-Stationary Environments网络公开度学科排名




书目名称Learning in Non-Stationary Environments被引频次




书目名称Learning in Non-Stationary Environments被引频次学科排名




书目名称Learning in Non-Stationary Environments年度引用




书目名称Learning in Non-Stationary Environments年度引用学科排名




书目名称Learning in Non-Stationary Environments读者反馈




书目名称Learning in Non-Stationary Environments读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:59:20 | 显示全部楼层
https://doi.org/10.1007/978-1-4419-8020-5Dynamic learning; Knowledge extraction; adaptive modeling; data streams; drifts and shifts; dynamic dimen
发表于 2025-3-22 02:41:41 | 显示全部楼层
发表于 2025-3-22 05:07:49 | 显示全部楼层
http://image.papertrans.cn/l/image/582968.jpg
发表于 2025-3-22 10:32:32 | 显示全部楼层
发表于 2025-3-22 16:22:59 | 显示全部楼层
Book 2012in system complexity and state changes, information sources, the need for faster data handling and the integration of environmental influences. Intelligent systems, equipped with a taxonomy of data-driven system identification and machine learning algorithms, can handle these problems partially. Con
发表于 2025-3-22 19:52:40 | 显示全部楼层
发表于 2025-3-22 23:33:27 | 显示全部楼层
Katharina Tschumitschew,Frank Klawonnnsbesondere für Nicht- Fachleute. Daher: Zu Risiken und Nebenwirkungen bei Computer, Smartphone & Co. fragen Sie am besten Tobias Schrödel – oder Ihren Datenschützer.978-3-658-10857-1978-3-658-10858-8
发表于 2025-3-23 05:27:12 | 显示全部楼层
发表于 2025-3-23 07:52:13 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-28 10:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表