找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Learning Theory; 17th Annual Conferen John Shawe-Taylor,Yoram Singer Conference proceedings 2004 Springer-Verlag Berlin Heidelberg 2004 Boo

[复制链接]
查看: 27628|回复: 62
发表于 2025-3-21 18:33:05 | 显示全部楼层 |阅读模式
书目名称Learning Theory
副标题17th Annual Conferen
编辑John Shawe-Taylor,Yoram Singer
视频video
概述Includes supplementary material:
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Learning Theory; 17th Annual Conferen John Shawe-Taylor,Yoram Singer Conference proceedings 2004 Springer-Verlag Berlin Heidelberg 2004 Boo
出版日期Conference proceedings 2004
关键词Boolean function; Boosting; algorithmic learning; bayesian networks; computational learning; decision the
版次1
doihttps://doi.org/10.1007/b98522
isbn_softcover978-3-540-22282-8
isbn_ebook978-3-540-27819-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2004
The information of publication is updating

书目名称Learning Theory影响因子(影响力)




书目名称Learning Theory影响因子(影响力)学科排名




书目名称Learning Theory网络公开度




书目名称Learning Theory网络公开度学科排名




书目名称Learning Theory被引频次




书目名称Learning Theory被引频次学科排名




书目名称Learning Theory年度引用




书目名称Learning Theory年度引用学科排名




书目名称Learning Theory读者反馈




书目名称Learning Theory读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:36:59 | 显示全部楼层
A Function Representation for Learning in Banach Spacesh spaces and show how this function representation naturally arises in that problem. Furthermore, we provide circumstances in which these representations are dense relative to the uniform norm and discuss how the parameters in such representations may be used to fit data.
发表于 2025-3-22 03:59:17 | 显示全部楼层
发表于 2025-3-22 05:54:26 | 显示全部楼层
Regret Bounds for Hierarchical Classification with Linear-Threshold Functions the number of training examples and depends in a detailed way on the interaction between the process parameters and the taxonomy structure. Preliminary experiments on real-world data provide support to our theoretical results.
发表于 2025-3-22 11:39:43 | 显示全部楼层
发表于 2025-3-22 16:22:46 | 显示全部楼层
Concentration Bounds for Unigrams Language Modelarning algorithm is its expected per-word log-loss. We show that the leave-one-out method can be used for estimating the log-loss of the unigrams model with a PAC error of approximately ., for any distribution..We also bound the log-loss a priori, as a function of various parameters of the distribution.
发表于 2025-3-22 18:49:46 | 显示全部楼层
发表于 2025-3-23 00:30:34 | 显示全部楼层
Learning Classes of Probabilistic Automata stochastic languages. We show that a MA may generate a stochastic language that cannot be generated by a PFA, but we show also that it is undecidable whether a MA generates a stochastic language. Finally, we propose a learning algorithm for a subclass of PFA, called PRFA.
发表于 2025-3-23 02:57:55 | 显示全部楼层
发表于 2025-3-23 09:35:50 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 11:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表