找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Learning Regression Analysis by Simulation; Kunio Takezawa Book 2014 Springer Japan 2014 Akaike‘s Information Criterion (AIC).basic concep

[复制链接]
查看: 14725|回复: 38
发表于 2025-3-21 16:34:02 | 显示全部楼层 |阅读模式
书目名称Learning Regression Analysis by Simulation
编辑Kunio Takezawa
视频video
图书封面Titlebook: Learning Regression Analysis by Simulation;  Kunio Takezawa Book 2014 Springer Japan 2014 Akaike‘s Information Criterion (AIC).basic concep
描述.The standard approach of most introductory books for practical statistics is that readers first learn the minimum mathematical basics of statistics and rudimentary concepts of statistical methodology. They then are given examples of analyses of data obtained from natural and social phenomena so that they can grasp practical definitions of statistical methods. Finally they go on to acquaint themselves with statistical software for the PC and analyze similar data to expand and deepen their understanding of statistical methods..This book, however, takes a slightly different approach, using simulation data instead of actual data to illustrate the functions of statistical methods. Also, R programs listed in the book help readers realize clearly how these methods work to bring intrinsic values of data to the surface. R is free software enabling users to handle vectors, matrices, data frames, and so on..For example, when a statistical theory indicates that an event happens with a 5 % probability, readers can confirm the fact using R programs that this event actually occurs with roughly that probability, by handling data generated by pseudo-random numbers. Simulation gives readers populat
出版日期Book 2014
关键词Akaike‘s Information Criterion (AIC); basic concepts of linear algebra; basic concepts of statistics; l
版次1
doihttps://doi.org/10.1007/978-4-431-54321-3
isbn_softcover978-4-431-56143-9
isbn_ebook978-4-431-54321-3
copyrightSpringer Japan 2014
The information of publication is updating

书目名称Learning Regression Analysis by Simulation影响因子(影响力)




书目名称Learning Regression Analysis by Simulation影响因子(影响力)学科排名




书目名称Learning Regression Analysis by Simulation网络公开度




书目名称Learning Regression Analysis by Simulation网络公开度学科排名




书目名称Learning Regression Analysis by Simulation被引频次




书目名称Learning Regression Analysis by Simulation被引频次学科排名




书目名称Learning Regression Analysis by Simulation年度引用




书目名称Learning Regression Analysis by Simulation年度引用学科排名




书目名称Learning Regression Analysis by Simulation读者反馈




书目名称Learning Regression Analysis by Simulation读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:59:32 | 显示全部楼层
http://image.papertrans.cn/l/image/582782.jpg
发表于 2025-3-22 04:15:21 | 显示全部楼层
发表于 2025-3-22 05:14:38 | 显示全部楼层
Simple Regression,. where . ( = ..) is a residual. This process yields the regression equation: . where .. is the intercept and .. is the gradient (slope). Each data point is represented as . Values such as .. and .. are called regression coefficients. The “ . ” (hat) of . and . indicates that these values are estimates.
发表于 2025-3-22 09:26:24 | 显示全部楼层
发表于 2025-3-22 14:23:35 | 显示全部楼层
发表于 2025-3-22 17:25:05 | 显示全部楼层
Linear Mixed Model, are column matrices for which the lengths are .. and can be expressed in the form: . Here, {..} (1 ≤ . ≤ ..) are observations of the .-th treatment (1 ≤ . ≤ .); {..} (1 ≤ . ≤ .) are realizations from .(0, ..) (normal distribution with mean 0 and variance ..).
发表于 2025-3-22 23:29:56 | 显示全部楼层
发表于 2025-3-23 04:12:50 | 显示全部楼层
a frames, and so on..For example, when a statistical theory indicates that an event happens with a 5 % probability, readers can confirm the fact using R programs that this event actually occurs with roughly that probability, by handling data generated by pseudo-random numbers. Simulation gives readers populat978-4-431-56143-9978-4-431-54321-3
发表于 2025-3-23 05:52:50 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-24 16:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表