找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Learning Classifier Systems; From Foundations to Pier Luca Lanzi,Wolfgang Stolzmann,Stewart W. Wils Conference proceedings 2000 Springer-V

[复制链接]
查看: 41705|回复: 44
发表于 2025-3-21 19:31:46 | 显示全部楼层 |阅读模式
书目名称Learning Classifier Systems
副标题From Foundations to
编辑Pier Luca Lanzi,Wolfgang Stolzmann,Stewart W. Wils
视频video
概述Includes supplementary material:
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Learning Classifier Systems; From Foundations to  Pier Luca Lanzi,Wolfgang Stolzmann,Stewart W. Wils Conference proceedings 2000 Springer-V
描述Learning Classifier Systems (LCS) are a machine learning paradigm introduced by John Holland in 1976. They are rule-based systems in which learning is viewed as a process of ongoing adaptation to a partially unknown environment through genetic algorithms and temporal difference learning. This book provides a unique survey of the current state of the art of LCS and highlights some of the most promising research directions. The first part presents various views of leading people on what learning classifier systems are. The second part is devoted to advanced topics of current interest, including alternative representations, methods for evaluating rule utility, and extensions to existing classifier system models. The final part is dedicated to promising applications in areas like data mining, medical data analysis, economic trading agents, aircraft maneuvering, and autonomous robotics. An appendix comprising 467 entries provides a comprehensive LCS bibliography.
出版日期Conference proceedings 2000
关键词Extension; agents; algorithmic learning; algorithms; autonomous robot; data mining; evolution; fuzzy; geneti
版次1
doihttps://doi.org/10.1007/3-540-45027-0
isbn_softcover978-3-540-67729-1
isbn_ebook978-3-540-45027-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2000
The information of publication is updating

书目名称Learning Classifier Systems影响因子(影响力)




书目名称Learning Classifier Systems影响因子(影响力)学科排名




书目名称Learning Classifier Systems网络公开度




书目名称Learning Classifier Systems网络公开度学科排名




书目名称Learning Classifier Systems被引频次




书目名称Learning Classifier Systems被引频次学科排名




书目名称Learning Classifier Systems年度引用




书目名称Learning Classifier Systems年度引用学科排名




书目名称Learning Classifier Systems读者反馈




书目名称Learning Classifier Systems读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:33:42 | 显示全部楼层
发表于 2025-3-22 02:08:51 | 显示全部楼层
发表于 2025-3-22 05:43:24 | 显示全部楼层
Pier Luca Lanzi,Wolfgang Stolzmann,Stewart W. WilsIncludes supplementary material:
发表于 2025-3-22 09:03:27 | 显示全部楼层
发表于 2025-3-22 16:20:03 | 显示全部楼层
What Is a Learning Classifier System?We asked ‘What is a Learning Classifier System’ to some of the best-known researchers in the field. These are their answers.
发表于 2025-3-22 18:12:15 | 显示全部楼层
A Roadmap to the Last Decade of Learning Classifier System Research (From 1989 to 1999)In 1989 Wilson and Goldberg presented a critical review of the first ten years of learning classifier system research. With this paper we review the subsequent ten years of learning classifier systems research, discussing the main achievements and the major research directions pursued in those years.
发表于 2025-3-23 00:27:40 | 显示全部楼层
Get Real! XCS with Continuous-Valued InputsClassifier systems have traditionally taken binary strings as inputs, yet in many real problems such as data inference, the inputs have real components. A modified XCS classifier system is described that learns a non-linear real-vector classification t
发表于 2025-3-23 02:13:50 | 显示全部楼层
发表于 2025-3-23 05:57:21 | 显示全部楼层
n of arterial extravasation and/or renal collecting system injuries, as well as assessment of preexisting renal pathology and evaluation of any damage to the contralateral kidney or other organs. Ultrasound (US) evaluation represents a valid alternative to CT thanks to its safety and reproducibility
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 02:05
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表