用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Latent Variable Modeling and Applications to Causality; Maia Berkane Conference proceedings 1997 Springer Science+Business Media New York

[复制链接]
查看: 29700|回复: 52
发表于 2025-3-21 19:17:12 | 显示全部楼层 |阅读模式
书目名称Latent Variable Modeling and Applications to Causality
编辑Maia Berkane
视频videohttp://file.papertrans.cn/582/581808/581808.mp4
丛书名称Lecture Notes in Statistics
图书封面Titlebook: Latent Variable Modeling and Applications to Causality;  Maia Berkane Conference proceedings 1997 Springer Science+Business Media New York
描述This volume gathers refereed papers presented at the 1994 UCLA conference on "La­ tent Variable Modeling and Application to Causality. " The meeting was organized by the UCLA Interdivisional Program in Statistics with the purpose of bringing together a group of people who have done recent advanced work in this field. The papers in this volume are representative of a wide variety of disciplines in which the use of latent variable models is rapidly growing. The volume is divided into two broad sections. The first section covers Path Models and Causal Reasoning and the papers are innovations from contributors in disciplines not traditionally associated with behavioural sciences, (e. g. computer science with Judea Pearl and public health with James Robins). Also in this section are contri­ butions by Rod McDonald and Michael Sobel who have a more traditional approach to causal inference, generating from problems in behavioural sciences. The second section encompasses new approaches to questions of model selection with emphasis on factor analysis and time varying systems. Amemiya uses nonlinear factor analysis which has a higher order of complexity associated with the identifiability co
出版日期Conference proceedings 1997
关键词Estimator; Factor analysis; Fitting; Latent variable model; Likelihood; best fit; correlation; expectation–
版次1
doihttps://doi.org/10.1007/978-1-4612-1842-5
isbn_softcover978-0-387-94917-8
isbn_ebook978-1-4612-1842-5Series ISSN 0930-0325 Series E-ISSN 2197-7186
issn_series 0930-0325
copyrightSpringer Science+Business Media New York 1997
The information of publication is updating

书目名称Latent Variable Modeling and Applications to Causality影响因子(影响力)




书目名称Latent Variable Modeling and Applications to Causality影响因子(影响力)学科排名




书目名称Latent Variable Modeling and Applications to Causality网络公开度




书目名称Latent Variable Modeling and Applications to Causality网络公开度学科排名




书目名称Latent Variable Modeling and Applications to Causality被引频次




书目名称Latent Variable Modeling and Applications to Causality被引频次学科排名




书目名称Latent Variable Modeling and Applications to Causality年度引用




书目名称Latent Variable Modeling and Applications to Causality年度引用学科排名




书目名称Latent Variable Modeling and Applications to Causality读者反馈




书目名称Latent Variable Modeling and Applications to Causality读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:36:58 | 显示全部楼层
发表于 2025-3-22 01:37:20 | 显示全部楼层
发表于 2025-3-22 08:22:39 | 显示全部楼层
Latent Variable Growth Modeling with Multilevel Data,ture of this two-level model is that contrary to recent applications of multilevel latent variable modeling, a mean structure is imposed in addition to the covariance structure. An example using educational achievement data illustrates the methodology.
发表于 2025-3-22 12:21:32 | 显示全部楼层
High-dimensional Full-information Item Factor Analysis,ustifying unidimensional IRT item analysis. Because hundreds of items may be analyzed jointly, the detail and generality that may be achieved exceeds that of any other procedure for exploring relationships among responses.
发表于 2025-3-22 13:39:25 | 显示全部楼层
发表于 2025-3-22 20:21:20 | 显示全部楼层
发表于 2025-3-22 22:12:29 | 显示全部楼层
发表于 2025-3-23 04:45:41 | 显示全部楼层
Embedding common factors in a path model,cessary preliminaries from the case of path models without common factors, then section 3 treats the problem of embedding a block of common factors in a path model. Section 4 gives a numerical example.
发表于 2025-3-23 09:08:47 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-13 16:36
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表