找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data; First China Conferen Huajun Chen,Heng Ji,Tong Ruan Confer

[复制链接]
查看: 40308|回复: 59
发表于 2025-3-21 19:58:17 | 显示全部楼层 |阅读模式
书目名称Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data
副标题First China Conferen
编辑Huajun Chen,Heng Ji,Tong Ruan
视频videohttp://file.papertrans.cn/544/543935/543935.mp4
概述Includes supplementary material:
丛书名称Communications in Computer and Information Science
图书封面Titlebook: Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data; First China Conferen Huajun Chen,Heng Ji,Tong Ruan Confer
描述.This book constitutes the refereed proceedings of the first China Conference on Knowledge Graph and Semantic Computing, CCKS, held in Beijing, China, in September 2016..The 19 revised full papers presented together with 6 shared tasks were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on knowledge representation and learning; knowledge graph construction and information extraction; linked data and knowledge-based systems; shared tasks..
出版日期Conference proceedings 2016
关键词Knowledge representation; Knowledge engineering; Knowledge graph; Information extraction; Data mining; Se
版次1
doihttps://doi.org/10.1007/978-981-10-3168-7
isbn_softcover978-981-10-3167-0
isbn_ebook978-981-10-3168-7Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer Nature Singapore Pte Ltd. 2016
The information of publication is updating

书目名称Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data影响因子(影响力)




书目名称Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data影响因子(影响力)学科排名




书目名称Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data网络公开度




书目名称Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data网络公开度学科排名




书目名称Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data被引频次




书目名称Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data被引频次学科排名




书目名称Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data年度引用




书目名称Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data年度引用学科排名




书目名称Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data读者反馈




书目名称Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:36:18 | 显示全部楼层
Biomedical Event Trigger Detection Based on Hybrid Methods Integrating Word Embeddingsngs are learnt from large scale unlabeled texts and integrated as unsupervised features into other rich features based on dependency parse graphs, and thus a lot of semantic information can be represented. Experimental results show our method outperforms the state-of-the-art systems.
发表于 2025-3-22 00:58:56 | 显示全部楼层
LD2LD: Integrating, Enriching and Republishing Library Data as Linked Datanect researcher data with publication data such as papers, patents and monograph using entity linking methods. After that, we use simple reasoning to predict missing values and enrich the library data with external data. Finally, we republish the integrated and enriched library data as Linked Data.
发表于 2025-3-22 06:41:28 | 显示全部楼层
发表于 2025-3-22 09:49:01 | 显示全部楼层
Boosting to Build a Large-Scale Cross-Lingual Ontologye the performance of ontology building and instance matching. Experiments output an ontology containing over 3,520,000 English instances, 800,000 Chinese instances, and over 150,000 cross-lingual instance alignments. The F1-measure improvement of Chinese . prediction achieve the highest 32%.
发表于 2025-3-22 15:08:52 | 显示全部楼层
GRU-RNN Based Question Answering Over Knowledge Baseirs are used to train our multi-step system. We evaluate our system on . and .. The experimental results show that our system achieves comparable performance compared with baseline method with a more straightforward structure.
发表于 2025-3-22 19:47:24 | 显示全部楼层
发表于 2025-3-23 00:20:30 | 显示全部楼层
发表于 2025-3-23 03:38:16 | 显示全部楼层
发表于 2025-3-23 08:11:04 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-12 11:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表