找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Knots and Primes; An Introduction to A Masanori Morishita Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), unde

[复制链接]
楼主: melancholy
发表于 2025-3-27 00:22:53 | 显示全部楼层
Homology Groups and Ideal Class Groups II: Higher-Order Genus Theory,Let . be a rational homology 3-sphere which is a double covering of . ramified over a .-component link and let . be a quadratic extension of . ramified over . odd prime numbers.
发表于 2025-3-27 03:16:47 | 显示全部楼层
Homology Groups and Ideal Class Groups III: Asymptotic Formulas,As we discussed in Chap. ., there is a group-theoretic analogy between the knot module associated to the infinite cyclic covering of a knot exterior and the Iwasawa module associated to the cyclotomic .-extension of number fields. Based on this analogy, there are found close parallels between the Alexander–Fox theory and Iwasawa theory.
发表于 2025-3-27 08:12:17 | 显示全部楼层
Torsions and the Iwasawa Main Conjecture,The Iwasawa main conjecture asserts that the Iwasawa polynomial coincides essentially with the Kubota–Leopoldt .-adic analytic zeta function.
发表于 2025-3-27 10:51:20 | 显示全部楼层
Moduli Spaces of Representations of Knot and Prime Groups,In view of the analogy between a knot group . and a prime group ., we expect some analogies between the moduli spaces of representations of knot and prime groups.
发表于 2025-3-27 14:06:32 | 显示全部楼层
Deformations of Hyperbolic Structures and ,-Adic Ordinary Modular Forms,As we have seen in Chap. ., the Alexander–Fox theory and Iwasawa theory may be regarded as theories on the moduli spaces of 1-dimensional representations.
发表于 2025-3-27 21:05:30 | 显示全部楼层
发表于 2025-3-28 01:04:55 | 显示全部楼层
https://doi.org/10.1007/978-981-99-9255-33-manifolds; arithmetic topology; homology groups; knots and primes; legendre symbols; number rings
发表于 2025-3-28 05:05:29 | 显示全部楼层
Preliminaries: Fundamental Groups and Galois Groups,summary of fundamental groups and Galois theory for topological spaces and arithmetic rings in Sects. 2.1 and 2.2, since the analogies between topological and arithmetic fundamental/Galois groups are fundamental in this book.
发表于 2025-3-28 07:44:49 | 显示全部楼层
Masanori MorishitaIs the new, updated edition of the first book on arithmetic topology.Provides a solid foundation of arithmetic topology for graduate students and researchers.Includes useful problems guiding future st
发表于 2025-3-28 10:35:19 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-12 02:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表