找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Kleinian Groups; Bernard Maskit Book 1988 Springer-Verlag Berlin Heidelberg 1988 Area.Dimension.Finite.Group theory.Invariant.Riemann surf

[复制链接]
查看: 23183|回复: 44
发表于 2025-3-21 16:35:52 | 显示全部楼层 |阅读模式
书目名称Kleinian Groups
编辑Bernard Maskit
视频video
丛书名称Grundlehren der mathematischen Wissenschaften
图书封面Titlebook: Kleinian Groups;  Bernard Maskit Book 1988 Springer-Verlag Berlin Heidelberg 1988 Area.Dimension.Finite.Group theory.Invariant.Riemann surf
描述The modern theory of Kleinian groups starts with the work of Lars Ahlfors and Lipman Bers; specifically with Ahlfors‘ finiteness theorem, and Bers‘ observation that their joint work on the Beltrami equation has deep implications for the theory of Kleinian groups and their deformations. From the point of view of uniformizations of Riemann surfaces, Bers‘ observation has the consequence that the question of understanding the different uniformizations of a finite Riemann surface poses a purely topological problem; it is independent of the conformal structure on the surface. The last two chapters here give a topological description of the set of all (geometrically finite) uniformizations of finite Riemann surfaces. We carefully skirt Ahlfors‘ finiteness theorem. For groups which uniformize a finite Riemann surface; that is, groups with an invariant component, one can either start with the assumption that the group is finitely generated, and then use the finiteness theorem to conclude that the group represents only finitely many finite Riemann surfaces, or, as we do here, one can start with the assumption that, in the invariant component, the group represents a finite Riemann surface, a
出版日期Book 1988
关键词Area; Dimension; Finite; Group theory; Invariant; Riemann surface; approximation; convergence; field; finite
版次1
doihttps://doi.org/10.1007/978-3-642-61590-0
isbn_softcover978-3-642-64878-6
isbn_ebook978-3-642-61590-0Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
copyrightSpringer-Verlag Berlin Heidelberg 1988
The information of publication is updating

书目名称Kleinian Groups影响因子(影响力)




书目名称Kleinian Groups影响因子(影响力)学科排名




书目名称Kleinian Groups网络公开度




书目名称Kleinian Groups网络公开度学科排名




书目名称Kleinian Groups被引频次




书目名称Kleinian Groups被引频次学科排名




书目名称Kleinian Groups年度引用




书目名称Kleinian Groups年度引用学科排名




书目名称Kleinian Groups读者反馈




书目名称Kleinian Groups读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:13:13 | 显示全部楼层
Groups of Isometries,roups. We then build some of the theory of discrete groups of isometries in these geometries. The major results are the construction of the Dirichlet and Ford regions, and the proof of Poincare’s polyhedron theorem.
发表于 2025-3-22 03:32:46 | 显示全部楼层
发表于 2025-3-22 08:16:45 | 显示全部楼层
Combination Theorems, abstract setting, are given in sections A and D. For Kleinian groups, the purely abstract setting is sufficient to prove that the combined group . is discrete and has the named group theoretic structure, but does not suffice to give a clear understanding of ./. or of ℍ./.; nor does it yield suffici
发表于 2025-3-22 11:34:45 | 显示全部楼层
发表于 2025-3-22 16:19:11 | 显示全部楼层
-Groups,es: Fuchsian and quasifuchsian groups (these are groups with exactly two components, both invariant), degenerate groups (these are groups with exactly one component), and groups that contain accidental parabolic transformations. We also demonstrate the existence of degenerate groups, and discuss the
发表于 2025-3-22 18:03:34 | 显示全部楼层
发表于 2025-3-23 01:09:40 | 显示全部楼层
发表于 2025-3-23 04:34:05 | 显示全部楼层
发表于 2025-3-23 08:59:28 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 15:38
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表