找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Kernel-based Data Fusion for Machine Learning; Methods and Applicat Shi Yu,Léon-Charles Tranchevent,Yves Moreau Book 2011 Springer Berlin H

[复制链接]
查看: 47393|回复: 43
发表于 2025-3-21 18:14:56 | 显示全部楼层 |阅读模式
书目名称Kernel-based Data Fusion for Machine Learning
副标题Methods and Applicat
编辑Shi Yu,Léon-Charles Tranchevent,Yves Moreau
视频video
概述Recent research on Kernel-based Data Fusion for Machine Learning.Presents methods and applications in bioinformatics and text mining.Written by leading experts in the field
丛书名称Studies in Computational Intelligence
图书封面Titlebook: Kernel-based Data Fusion for Machine Learning; Methods and Applicat Shi Yu,Léon-Charles Tranchevent,Yves Moreau Book 2011 Springer Berlin H
描述.Data fusion problems arise frequently in many different fields.  This book provides a specific introduction to data fusion problems using support vector machines. In the first part, this book begins with a brief survey of additive models and Rayleigh quotient objectives in machine learning, and then introduces kernel fusion as the additive expansion of support vector machines in the dual problem.  The second part presents several novel kernel fusion algorithms and some real applications in supervised and unsupervised learning. The last part of the book substantiates the value of the proposed theories and algorithms in MerKator, an open software to identify disease relevant genes based on the integration of heterogeneous genomic data sources in multiple species. .The topics presented in this book are meant for researchers or students who use support vector machines. Several topics addressed in the book may also be interesting to computational biologists who want to tackle data fusion challenges in real applications. The background required of the reader is a good knowledge of data mining, machine learning and linear algebra.. .
出版日期Book 2011
关键词Bioinformatics; Computational Intelligence; Data Fusion; Kernel Method; Text Mining
版次1
doihttps://doi.org/10.1007/978-3-642-19406-1
isbn_softcover978-3-642-26751-2
isbn_ebook978-3-642-19406-1Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer Berlin Heidelberg 2011
The information of publication is updating

书目名称Kernel-based Data Fusion for Machine Learning影响因子(影响力)




书目名称Kernel-based Data Fusion for Machine Learning影响因子(影响力)学科排名




书目名称Kernel-based Data Fusion for Machine Learning网络公开度




书目名称Kernel-based Data Fusion for Machine Learning网络公开度学科排名




书目名称Kernel-based Data Fusion for Machine Learning被引频次




书目名称Kernel-based Data Fusion for Machine Learning被引频次学科排名




书目名称Kernel-based Data Fusion for Machine Learning年度引用




书目名称Kernel-based Data Fusion for Machine Learning年度引用学科排名




书目名称Kernel-based Data Fusion for Machine Learning读者反馈




书目名称Kernel-based Data Fusion for Machine Learning读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:13:51 | 显示全部楼层
Conclusion,h described in this book covers a number of topics which are relevant to supervised and unsupervised learning by kernel-based data fusion. The discussion of these topics were distinguished in four different aspects: theory, algorithm, application and software.
发表于 2025-3-22 02:23:49 | 显示全部楼层
发表于 2025-3-22 06:42:57 | 显示全部楼层
Kernel-based Data Fusion for Machine Learning978-3-642-19406-1Series ISSN 1860-949X Series E-ISSN 1860-9503
发表于 2025-3-22 11:03:49 | 显示全部楼层
Shi Yu,Léon-Charles Tranchevent,Yves MoreauRecent research on Kernel-based Data Fusion for Machine Learning.Presents methods and applications in bioinformatics and text mining.Written by leading experts in the field
发表于 2025-3-22 16:38:38 | 显示全部楼层
Studies in Computational Intelligencehttp://image.papertrans.cn/k/image/542454.jpg
发表于 2025-3-22 19:27:18 | 显示全部楼层
发表于 2025-3-23 00:58:50 | 显示全部楼层
发表于 2025-3-23 04:42:38 | 显示全部楼层
发表于 2025-3-23 07:07:51 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 10:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表