找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Kurt Gödel; The Princeton Lectur Maria Hämeen-Anttila,Jan von Plato Book 2021 The Editor(s) (if applicable) and The Author(s), under exclus

[复制链接]
查看: 9033|回复: 35
发表于 2025-3-21 17:46:34 | 显示全部楼层 |阅读模式
书目名称Kurt Gödel
副标题The Princeton Lectur
编辑Maria Hämeen-Anttila,Jan von Plato
视频video
概述Offers indispensable reading for mathematicians and computer scientists.Gives insights into thework that is needed to solve scientific questions.Forms a basis for further investigations into Gödel‘s v
丛书名称Sources and Studies in the History of Mathematics and Physical Sciences
图书封面Titlebook: Kurt Gödel; The Princeton Lectur Maria Hämeen-Anttila,Jan von Plato Book 2021 The Editor(s) (if applicable) and The Author(s), under exclus
描述Paris of the year 1900 left two landmarks: the .Tour Eiffel,. and David Hilbert‘s celebrated list of twenty-four mathematical problems presented at a conference opening the new century. Kurt Gödel, a logical icon of that time, showed Hilbert‘s ideal of complete axiomatization of mathematics to be unattainable. The result, of 1931, is called Gödel‘s .incompleteness theorem.. Gödel then went on to attack Hilbert‘s first and second Paris problems, namely Cantor‘s .continuum problem. about the type of infinity of the real numbers, and the freedom from contradiction of the theory of real numbers. By 1963, it became clear that Hilbert‘s first question could not be answered by any known means, half of the credit of this seeming .faux pas. going to Gödel. The second is a problem still wide open. Gödel worked on it for years, with no definitive results; The best he could offer was a start with the arithmetic of the entire numbers. .This book, Gödel‘s lectures at the famous Princeton Institute for Advanced Study in 1941, shows how far he had come with Hilbert‘s second problem, namely to a theory of computable functionals of finite type and a proof of the consistency of ordinary arithmetic. I
出版日期Book 2021
关键词axiomatic intuitionistic logic; properties of partial recursive functions; Heyting arithmetic; Arbeitsh
版次1
doihttps://doi.org/10.1007/978-3-030-87296-0
isbn_softcover978-3-030-87298-4
isbn_ebook978-3-030-87296-0Series ISSN 2196-8810 Series E-ISSN 2196-8829
issn_series 2196-8810
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Kurt Gödel影响因子(影响力)




书目名称Kurt Gödel影响因子(影响力)学科排名




书目名称Kurt Gödel网络公开度




书目名称Kurt Gödel网络公开度学科排名




书目名称Kurt Gödel被引频次




书目名称Kurt Gödel被引频次学科排名




书目名称Kurt Gödel年度引用




书目名称Kurt Gödel年度引用学科排名




书目名称Kurt Gödel读者反馈




书目名称Kurt Gödel读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:48:34 | 显示全部楼层
2196-8810 nstitute for Advanced Study in 1941, shows how far he had come with Hilbert‘s second problem, namely to a theory of computable functionals of finite type and a proof of the consistency of ordinary arithmetic. I978-3-030-87298-4978-3-030-87296-0Series ISSN 2196-8810 Series E-ISSN 2196-8829
发表于 2025-3-22 01:52:16 | 显示全部楼层
发表于 2025-3-22 06:13:37 | 显示全部楼层
发表于 2025-3-22 11:49:35 | 显示全部楼层
发表于 2025-3-22 13:08:02 | 显示全部楼层
978-3-030-87298-4The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-22 20:30:56 | 显示全部楼层
Kurt Gödel978-3-030-87296-0Series ISSN 2196-8810 Series E-ISSN 2196-8829
发表于 2025-3-22 23:29:08 | 显示全部楼层
https://doi.org/10.1007/978-3-030-87296-0axiomatic intuitionistic logic; properties of partial recursive functions; Heyting arithmetic; Arbeitsh
发表于 2025-3-23 03:03:11 | 显示全部楼层
发表于 2025-3-23 06:27:56 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 04:41
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表