找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields; Hatice Boylan Book 2015 Springer International Publish

[复制链接]
查看: 34396|回复: 35
发表于 2025-3-21 18:15:00 | 显示全部楼层 |阅读模式
书目名称Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields
编辑Hatice Boylan
视频video
概述Presents a theory which is intended to open new directions of research in the theory of Hilbert modular forms.Provides a steep introduction to Weil representations of Hilbert modular groups.Provides t
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields;  Hatice Boylan Book 2015 Springer International Publish
描述The new theory of Jacobi forms over totally real number fields introduced in this monograph is expected to give further insight into the arithmetic theory of Hilbert modular forms, its L-series, and into elliptic curves over number fields. This work is inspired by the classical theory of Jacobi forms over the rational numbers, which is an indispensable tool in the arithmetic theory of elliptic modular forms, elliptic curves, and in many other disciplines in mathematics and physics. Jacobi forms can be viewed as vector valued modular forms which take values in so-called Weil representations. Accordingly, the first two chapters develop the theory of finite quadratic modules and associated Weil representations over number fields. This part might also be interesting for those who are merely interested in the representation theory of Hilbert modular groups. One of the main applications is the complete classification of Jacobi forms of singular weight over an arbitrary totally real number field.
出版日期Book 2015
关键词11F50,11F27; Automorhic forms of singular weight; Finite quadratic modules; Jacobi Forms; Weil represent
版次1
doihttps://doi.org/10.1007/978-3-319-12916-7
isbn_softcover978-3-319-12915-0
isbn_ebook978-3-319-12916-7Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

书目名称Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields影响因子(影响力)




书目名称Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields影响因子(影响力)学科排名




书目名称Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields网络公开度




书目名称Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields网络公开度学科排名




书目名称Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields被引频次




书目名称Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields被引频次学科排名




书目名称Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields年度引用




书目名称Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields年度引用学科排名




书目名称Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields读者反馈




书目名称Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:22:54 | 显示全部楼层
Book 2015eory of Hilbert modular forms, its L-series, and into elliptic curves over number fields. This work is inspired by the classical theory of Jacobi forms over the rational numbers, which is an indispensable tool in the arithmetic theory of elliptic modular forms, elliptic curves, and in many other dis
发表于 2025-3-22 02:48:03 | 显示全部楼层
发表于 2025-3-22 06:22:55 | 显示全部楼层
发表于 2025-3-22 12:26:20 | 显示全部楼层
Jacobi Forms over Totally Real Number Fields,From this chapter on, the number field . is assumed to be totally real. This restriction is necessary for guaranteeing the holomorphicity of .. As before, we shall simply write ., . for the ring of integers and different of ., respectively.
发表于 2025-3-22 14:04:55 | 显示全部楼层
Singular Jacobi Forms,As in the previous chapter, . will denote a totally real number field. Similarly, ., . will denote the ring of integers and different of ., respectively. Moreover, we shall use . and . for the metaplectic cover of ..
发表于 2025-3-22 17:34:39 | 显示全部楼层
978-3-319-12915-0Springer International Publishing Switzerland 2015
发表于 2025-3-22 23:36:00 | 显示全部楼层
发表于 2025-3-23 02:26:09 | 显示全部楼层
Hatice BoylanPresents a theory which is intended to open new directions of research in the theory of Hilbert modular forms.Provides a steep introduction to Weil representations of Hilbert modular groups.Provides t
发表于 2025-3-23 08:57:44 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 17:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表