找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Iwasawa Theory 2012; State of the Art and Thanasis Bouganis,Otmar Venjakob Conference proceedings 2014 Springer-Verlag Berlin Heidelberg 20

[复制链接]
楼主: mature
发表于 2025-3-28 15:36:07 | 显示全部楼层
On Equivariant Characteristic Ideals of Real Classesharacteristic ideal of . over . for all odd . by applying M. Witte’s formulation of an equivariant main conjecture (or “limit theorem”) due to Burns and Greither. This could shed some light on Greenberg’s conjecture on the vanishing of the .-invariant of ..∕..
发表于 2025-3-28 20:36:52 | 显示全部楼层
Noncommutative ,-Functions for Varieties over Finite Fields such complex we associate an .-function living in the first .-group of the power series ring over .. We then show that these .-functions satisfy a suitably generalised multiplicative Grothendieck trace formula.
发表于 2025-3-29 01:48:50 | 显示全部楼层
发表于 2025-3-29 05:50:22 | 显示全部楼层
发表于 2025-3-29 09:54:21 | 显示全部楼层
Iwasawa Theory 2012978-3-642-55245-8Series ISSN 2191-303X Series E-ISSN 2191-3048
发表于 2025-3-29 12:01:38 | 显示全部楼层
发表于 2025-3-29 15:58:54 | 显示全部楼层
On Special ,-Values Attached to Siegel Modular Forms Siegel modular forms. These results are all stated over an algebraic closure of .. In this article we work out the field of definition of these special values. In this way we extend some previous results obtained by Sturm, Harris, Panchishkin, and Böcherer-Schmidt.
发表于 2025-3-29 21:30:32 | 显示全部楼层
发表于 2025-3-30 03:04:03 | 显示全部楼层
发表于 2025-3-30 07:06:10 | 显示全部楼层
Noncommutative ,-Functions for Varieties over Finite Fields such complex we associate an .-function living in the first .-group of the power series ring over .. We then show that these .-functions satisfy a suitably generalised multiplicative Grothendieck trace formula.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 10:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表