找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Intelligent Systems and Data Science; Second International Nguyen Thai-Nghe,Thanh-Nghi Do,Salem Benferhat Conference proceedings 2025 The E

[复制链接]
查看: 43974|回复: 54
发表于 2025-3-21 16:11:50 | 显示全部楼层 |阅读模式
书目名称Intelligent Systems and Data Science
副标题Second International
编辑Nguyen Thai-Nghe,Thanh-Nghi Do,Salem Benferhat
视频video
丛书名称Communications in Computer and Information Science
图书封面Titlebook: Intelligent Systems and Data Science; Second International Nguyen Thai-Nghe,Thanh-Nghi Do,Salem Benferhat Conference proceedings 2025 The E
描述.This two-volume set constitutes the refereed proceedings of the Second International Conference, ISDS 2024, held in Nha Trang, Vietnam, during November 9–10, 2024...The 38 full papers and 10 short papers were carefully reviewed and selected from 129 submissions. They were categorized under the topical sections as follows: AI in E-Commerce, Agriculture, and Aquaculture; AI in Health Care Analytics; Big Data, IoT, and Cloud Computing; and Natural Language Processing..
出版日期Conference proceedings 2025
关键词Intelligent Systems & Recommended Systems; Data Science; Machine Learning; Image Processing; Pattern Rec
版次1
doihttps://doi.org/10.1007/978-981-97-9616-8
isbn_softcover978-981-97-9615-1
isbn_ebook978-981-97-9616-8Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

书目名称Intelligent Systems and Data Science影响因子(影响力)




书目名称Intelligent Systems and Data Science影响因子(影响力)学科排名




书目名称Intelligent Systems and Data Science网络公开度




书目名称Intelligent Systems and Data Science网络公开度学科排名




书目名称Intelligent Systems and Data Science被引频次




书目名称Intelligent Systems and Data Science被引频次学科排名




书目名称Intelligent Systems and Data Science年度引用




书目名称Intelligent Systems and Data Science年度引用学科排名




书目名称Intelligent Systems and Data Science读者反馈




书目名称Intelligent Systems and Data Science读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:12:02 | 显示全部楼层
发表于 2025-3-22 04:17:48 | 显示全部楼层
发表于 2025-3-22 05:10:05 | 显示全部楼层
Intelligent Systems and Data Science978-981-97-9616-8Series ISSN 1865-0929 Series E-ISSN 1865-0937
发表于 2025-3-22 12:01:08 | 显示全部楼层
Conference proceedings 2025er 9–10, 2024...The 38 full papers and 10 short papers were carefully reviewed and selected from 129 submissions. They were categorized under the topical sections as follows: AI in E-Commerce, Agriculture, and Aquaculture; AI in Health Care Analytics; Big Data, IoT, and Cloud Computing; and Natural Language Processing..
发表于 2025-3-22 15:04:02 | 显示全部楼层
Experimental Study on Spectrometric Features of Mud Crabs for Automatic Internal Quality Gradingat yield and ovarian fullness. Since they are currently evaluated and graded manually, there is a strong demand to automate them based on the objective spectrometric analysis. However, developing a practical spectrometric system and grading model with adequate performance and acceptable manufacturab
发表于 2025-3-22 18:49:44 | 显示全部楼层
Assessing Grain Size Variation Across Rice Panicles Using YOLOv8 and DeepLabv3 Models Grain morphology, characterized by length and width, is one of the key rice quality parameters. This characteristic could be influenced by grain position within the panicle. Numerous studies have employed image processing techniques and machine learning models for rice grain detection, counting, me
发表于 2025-3-23 00:38:09 | 显示全部楼层
BeLightRec: A Lightweight Recommender System Enhanced with BERTrs and decoders, particularly in recommendation systems utilizing collaborative filtering methods. Collaborative filtering exploits similarities between users and items from historical data. However, it overlooks distinctive information, such as item names and descriptions. The semantic data of item
发表于 2025-3-23 01:28:19 | 显示全部楼层
发表于 2025-3-23 08:28:04 | 显示全部楼层
Enhancing the Efficiency of Lung Disease Classification Based on Multi-modal Fusion Modelutcomes and ensuring effective treatment. In this paper, we propose a multi-modal model that integrates both chest X-ray images and clinical information text to improve the efficiency of lung disease classification. Our proposed model trains a Support Vector Machine (SVM) model on top of the fine-tu
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 03:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表