用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Imputation Methods for Missing Hydrometeorological Data Estimation; Ramesh S.V. Teegavarapu Book 2024 The Editor(s) (if applicable) and Th

[复制链接]
查看: 38270|回复: 40
发表于 2025-3-21 17:49:28 | 显示全部楼层 |阅读模式
书目名称Imputation Methods for Missing Hydrometeorological Data Estimation
编辑Ramesh S.V. Teegavarapu
视频video
概述Is a reference work for those interested in methods for imputation of missing data.Focuses on hydrometeorological data infilling methods.Emphasizes on practical applications of the methods and elabora
丛书名称Water Science and Technology Library
图书封面Titlebook: Imputation Methods for Missing Hydrometeorological Data Estimation;  Ramesh S.V. Teegavarapu Book 2024 The Editor(s) (if applicable) and Th
描述.Missing data is a ubiquitous problem that plagues many hydrometeorological datasets. Objective and robust spatial and temporal imputation methods are needed to estimate missing data and create error-free, gap-free, and chronologically continuous data. This book is a comprehensive guide and reference for basic and advanced interpolation and data-driven methods for imputing missing hydrometeorological data. The book provides detailed insights into different imputation methods, such as spatial and temporal interpolation, universal function approximation, and data mining-assisted imputation methods. It also introduces innovative spatial deterministic and stochastic methods focusing on the objective selection of control points and optimal spatial interpolation. The book also extensively covers emerging machine learning techniques that can be used in spatial and temporal interpolation schemes and error and performance measures for assessing interpolation methods and validating imputed data. The book demonstrates practical applications of these methods to real-world hydrometeorological data. It will cater to the needs of a broad spectrum of audiences, from graduate students and researche
出版日期Book 2024
关键词Missing data; Imputation Methods; Spatial Interpolation; Geostatistical Methods; Hydrometeorological Var
版次1
doihttps://doi.org/10.1007/978-3-031-60946-6
isbn_softcover978-3-031-60948-0
isbn_ebook978-3-031-60946-6Series ISSN 0921-092X Series E-ISSN 1872-4663
issn_series 0921-092X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Imputation Methods for Missing Hydrometeorological Data Estimation影响因子(影响力)




书目名称Imputation Methods for Missing Hydrometeorological Data Estimation影响因子(影响力)学科排名




书目名称Imputation Methods for Missing Hydrometeorological Data Estimation网络公开度




书目名称Imputation Methods for Missing Hydrometeorological Data Estimation网络公开度学科排名




书目名称Imputation Methods for Missing Hydrometeorological Data Estimation被引频次




书目名称Imputation Methods for Missing Hydrometeorological Data Estimation被引频次学科排名




书目名称Imputation Methods for Missing Hydrometeorological Data Estimation年度引用




书目名称Imputation Methods for Missing Hydrometeorological Data Estimation年度引用学科排名




书目名称Imputation Methods for Missing Hydrometeorological Data Estimation读者反馈




书目名称Imputation Methods for Missing Hydrometeorological Data Estimation读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:34:23 | 显示全部楼层
Imputation Methods: An Overview,ied spatial interpolation methods into three categories: (1) non-geostatistical methods, (2) geostatistical methods, and (3) combined methods. Other methods include temporal interpolation, universal function approximation, and machine learning-based methods.
发表于 2025-3-22 03:06:41 | 显示全部楼层
发表于 2025-3-22 08:29:03 | 显示全部楼层
发表于 2025-3-22 12:41:55 | 显示全部楼层
发表于 2025-3-22 13:56:21 | 显示全部楼层
Machine Learning and Multiple Imputation Methods, a subfield of Artificial Intelligence (AI), and the associated methods can help estimate missing data. Some of the ML methods are also called statistical machine learning methods. ML methods can be used to predict, classify, and cluster data.
发表于 2025-3-22 17:26:37 | 显示全部楼层
Book 2024 needed to estimate missing data and create error-free, gap-free, and chronologically continuous data. This book is a comprehensive guide and reference for basic and advanced interpolation and data-driven methods for imputing missing hydrometeorological data. The book provides detailed insights into
发表于 2025-3-22 22:58:07 | 显示全部楼层
发表于 2025-3-23 05:12:10 | 显示全部楼层
Introduction to Missing Data, studies that aid natural resources management and disaster mitigation tasks. Climatological data are generally considered to be observations of climatic conditions obtained from various instruments in space and time. Meteorological data mainly consists of parameters such as precipitation, temperatu
发表于 2025-3-23 07:52:27 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-28 06:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表