找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Irregularities in the Distribution of Prime Numbers; From the Era of Helm János Pintz,Michael Th. Rassias Book 2018 Springer International

[复制链接]
楼主: Withdrawal
发表于 2025-3-27 00:55:42 | 显示全部楼层
发表于 2025-3-27 03:01:02 | 显示全部楼层
http://image.papertrans.cn/i/image/475441.jpg
发表于 2025-3-27 06:58:09 | 显示全部楼层
https://doi.org/10.1007/978-3-319-92777-0analytic number theory; approximation theory; probabilistic theory; additive number theory; computationa
发表于 2025-3-27 12:16:40 | 显示全部楼层
Chains of Large Gaps Between Primes,arge gaps of primes. Recently, with Green and Konyagin, the authors showed that . for sufficiently large .. In this note, we combine the arguments in that paper with the Maier matrix method to show that . for any fixed . and sufficiently large .. The implied constant is effective and independent of ..
发表于 2025-3-27 15:26:26 | 显示全部楼层
发表于 2025-3-27 21:26:23 | 显示全部楼层
Distribution of Large Gaps Between Primes,We survey some past conditional results on the distribution of large gaps between consecutive primes and examine how the Hardy–Littlewood prime .-tuples conjecture can be applied to this question.
发表于 2025-3-27 23:44:58 | 显示全部楼层
On the Difference in Values of the Euler Totient Function Near Prime Arguments,We prove unconditionally that for each ., the difference .(. − .) − .(. + .) is positive for 50. of odd primes . and negative for 50..
发表于 2025-3-28 03:05:53 | 显示全部楼层
发表于 2025-3-28 09:34:15 | 显示全部楼层
Sums of Values of Nonprincipal Characters over Shifted Primes,For a nonprincipal character . modulo ., when ., (., .) = 1, we prove a nontrivial estimate of the form . for the sum of values of . over a sequence of shifted primes.
发表于 2025-3-28 11:48:15 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 18:34
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表