找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Inverse Problems in Ordinary Differential Equations and Applications; Jaume Llibre,Rafael Ramírez Book 2016 Springer International Publish

[复制链接]
查看: 26302|回复: 40
发表于 2025-3-21 17:35:29 | 显示全部楼层 |阅读模式
书目名称Inverse Problems in Ordinary Differential Equations and Applications
编辑Jaume Llibre,Rafael Ramírez
视频video
概述Solves the 16th Hilbert problem (restricted to algebraic limit cycles) based on generic assumptions.Presents a detailed analysis of transpositional relations, a generalization of the Hamiltonian princ
丛书名称Progress in Mathematics
图书封面Titlebook: Inverse Problems in Ordinary Differential Equations and Applications;  Jaume Llibre,Rafael Ramírez Book 2016 Springer International Publish
描述.This book is dedicated to study the inverse problem of ordinary differential equations, that is it focuses in finding all ordinary differential equations that satisfy a given set of properties. The Nambu bracket is the central tool in developing this approach. The authors start characterizing the ordinary differential equations in R^N which have a given set of partial integrals or first integrals. The results obtained are applied first to planar polynomial differential systems with a given set of such integrals, second to solve the 16th Hilbert problem restricted to generic algebraic limit cycles, third for solving the inverse problem for constrained Lagrangian and Hamiltonian mechanical systems, fourth for studying the integrability of a constrained rigid body. Finally the authors conclude with an analysis on nonholonomic mechanics, a generalization of the Hamiltonian principle, and the statement an solution of the inverse problem in vakonomic mechanics..
出版日期Book 2016
关键词16th Hilbert problem; Nambu bracket; inverse problems; ordinary differential equations; planar polynomia
版次1
doihttps://doi.org/10.1007/978-3-319-26339-7
isbn_softcover978-3-319-79935-3
isbn_ebook978-3-319-26339-7Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

书目名称Inverse Problems in Ordinary Differential Equations and Applications影响因子(影响力)




书目名称Inverse Problems in Ordinary Differential Equations and Applications影响因子(影响力)学科排名




书目名称Inverse Problems in Ordinary Differential Equations and Applications网络公开度




书目名称Inverse Problems in Ordinary Differential Equations and Applications网络公开度学科排名




书目名称Inverse Problems in Ordinary Differential Equations and Applications被引频次




书目名称Inverse Problems in Ordinary Differential Equations and Applications被引频次学科排名




书目名称Inverse Problems in Ordinary Differential Equations and Applications年度引用




书目名称Inverse Problems in Ordinary Differential Equations and Applications年度引用学科排名




书目名称Inverse Problems in Ordinary Differential Equations and Applications读者反馈




书目名称Inverse Problems in Ordinary Differential Equations and Applications读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:01:54 | 显示全部楼层
Book 2016ions that satisfy a given set of properties. The Nambu bracket is the central tool in developing this approach. The authors start characterizing the ordinary differential equations in R^N which have a given set of partial integrals or first integrals. The results obtained are applied first to planar
发表于 2025-3-22 03:31:18 | 显示全部楼层
发表于 2025-3-22 07:55:54 | 显示全部楼层
发表于 2025-3-22 11:45:20 | 显示全部楼层
发表于 2025-3-22 15:03:42 | 显示全部楼层
发表于 2025-3-22 18:35:22 | 显示全部楼层
发表于 2025-3-22 21:34:07 | 显示全部楼层
Integrability of the Constrained Rigid Body, is not so complete as for mechanical systems without constraints (unconstrained mechanical systems). This can be due to several reasons. One of them is that the equations of motion of a constrained mechanical system in general have no invariant measure, in contrast to the unconstrained case, see for instance [91].
发表于 2025-3-23 03:21:22 | 显示全部楼层
发表于 2025-3-23 06:00:50 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-6 02:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表