找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Invariant Measures for Stochastic Nonlinear Schrödinger Equations; Numerical Approximat Jialin Hong,Xu Wang Book 2019 Springer Nature Singa

[复制链接]
查看: 35093|回复: 37
发表于 2025-3-21 17:22:33 | 显示全部楼层 |阅读模式
书目名称Invariant Measures for Stochastic Nonlinear Schrödinger Equations
副标题Numerical Approximat
编辑Jialin Hong,Xu Wang
视频video
概述Gives a detailed introduction to ergodicity and symplectic and multi-symplectic structures for stochastic nonlinear Schrödinger equations.Provides the study of ergodic numerical approximations for sto
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Invariant Measures for Stochastic Nonlinear Schrödinger Equations; Numerical Approximat Jialin Hong,Xu Wang Book 2019 Springer Nature Singa
描述This book provides some recent advance in the study of stochastic nonlinear Schrödinger equations and their numerical approximations, including the well-posedness, ergodicity, symplecticity and multi-symplecticity. It gives an accessible overview of the existence and uniqueness of invariant measures for stochastic differential equations, introduces geometric structures including symplecticity and (conformal) multi-symplecticity for nonlinear Schrödinger equations and their numerical approximations, and studies the properties and convergence errors of numerical methods for stochastic nonlinear Schrödinger equations..This book will appeal to researchers who are interested in numerical analysis, stochastic analysis, ergodic theory, partial differential equation theory, etc..
出版日期Book 2019
关键词Invariant measures; ergodic theory; stochastic nonlinear Schrödinger equations; symplectic and multi-sy
版次1
doihttps://doi.org/10.1007/978-981-32-9069-3
isbn_softcover978-981-32-9068-6
isbn_ebook978-981-32-9069-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer Nature Singapore Pte Ltd. 2019
The information of publication is updating

书目名称Invariant Measures for Stochastic Nonlinear Schrödinger Equations影响因子(影响力)




书目名称Invariant Measures for Stochastic Nonlinear Schrödinger Equations影响因子(影响力)学科排名




书目名称Invariant Measures for Stochastic Nonlinear Schrödinger Equations网络公开度




书目名称Invariant Measures for Stochastic Nonlinear Schrödinger Equations网络公开度学科排名




书目名称Invariant Measures for Stochastic Nonlinear Schrödinger Equations被引频次




书目名称Invariant Measures for Stochastic Nonlinear Schrödinger Equations被引频次学科排名




书目名称Invariant Measures for Stochastic Nonlinear Schrödinger Equations年度引用




书目名称Invariant Measures for Stochastic Nonlinear Schrödinger Equations年度引用学科排名




书目名称Invariant Measures for Stochastic Nonlinear Schrödinger Equations读者反馈




书目名称Invariant Measures for Stochastic Nonlinear Schrödinger Equations读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:06:58 | 显示全部楼层
Lecture Notes in Mathematicshttp://image.papertrans.cn/i/image/474574.jpg
发表于 2025-3-22 02:45:01 | 显示全部楼层
发表于 2025-3-22 07:57:43 | 显示全部楼层
发表于 2025-3-22 12:08:26 | 显示全部楼层
Invariant Measures for Stochastic Differential Equations,tion and be applicable to practice. To the best of our knowledge, the numerical analysis of ergodic SDEs usually follows two directions. One is to construct numerical schemes which could inherit the ergodicity of the original system, and then to give the approximate error between the numerical invariant measure and the original one.
发表于 2025-3-22 13:07:15 | 显示全部楼层
发表于 2025-3-22 18:56:56 | 显示全部楼层
978-981-32-9068-6Springer Nature Singapore Pte Ltd. 2019
发表于 2025-3-23 00:15:55 | 显示全部楼层
发表于 2025-3-23 01:44:27 | 显示全部楼层
,Invariant Measures for Stochastic Nonlinear Schrödinger Equations,This chapter focuses on the existence and uniqueness of invariant measures for stochastic nonlinear Schrödinger equations, and recalls several results related to the well-posedness and continuous dependence on the initial value as the starting point of this chapter.
发表于 2025-3-23 07:05:07 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 04:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表