用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Invariant Manifolds and Fibrations for Perturbed Nonlinear Schrödinger Equations; Charles Li,Stephen Wiggins Book 1997 Springer Science+Bu

[复制链接]
查看: 48149|回复: 35
发表于 2025-3-21 19:52:56 | 显示全部楼层 |阅读模式
书目名称Invariant Manifolds and Fibrations for Perturbed Nonlinear Schrödinger Equations
编辑Charles Li,Stephen Wiggins
视频video
概述Presents detailed and pedagogic proofs - The authors techniques can be applied to a broad class of infinite dimensional dynamical systems - Stephen Wiggins has authored many successful Springer titles
丛书名称Applied Mathematical Sciences
图书封面Titlebook: Invariant Manifolds and Fibrations for Perturbed Nonlinear Schrödinger Equations;  Charles Li,Stephen Wiggins Book 1997 Springer Science+Bu
描述This book presents a development of invariant manifold theory for a spe­ cific canonical nonlinear wave system -the perturbed nonlinear Schrooinger equation. The main results fall into two parts. The first part is concerned with the persistence and smoothness of locally invariant manifolds. The sec­ ond part is concerned with fibrations of the stable and unstable manifolds of inflowing and overflowing invariant manifolds. The central technique for proving these results is Hadamard‘s graph transform method generalized to an infinite-dimensional setting. However, our setting is somewhat different than other approaches to infinite dimensional invariant manifolds since for conservative wave equations many of the interesting invariant manifolds are infinite dimensional and noncom pact. The style of the book is that of providing very detailed proofs of theorems for a specific infinite dimensional dynamical system-the perturbed nonlinear Schrodinger equation. The book is organized as follows. Chapter one gives an introduction which surveys the state of the art of invariant manifold theory for infinite dimensional dynamical systems. Chapter two develops the general setup for the perturbed
出版日期Book 1997
关键词Area; Smooth function; differential equation; manifold; partial differential equation
版次1
doihttps://doi.org/10.1007/978-1-4612-1838-8
isbn_softcover978-1-4612-7307-3
isbn_ebook978-1-4612-1838-8Series ISSN 0066-5452 Series E-ISSN 2196-968X
issn_series 0066-5452
copyrightSpringer Science+Business Media New York 1997
The information of publication is updating

书目名称Invariant Manifolds and Fibrations for Perturbed Nonlinear Schrödinger Equations影响因子(影响力)




书目名称Invariant Manifolds and Fibrations for Perturbed Nonlinear Schrödinger Equations影响因子(影响力)学科排名




书目名称Invariant Manifolds and Fibrations for Perturbed Nonlinear Schrödinger Equations网络公开度




书目名称Invariant Manifolds and Fibrations for Perturbed Nonlinear Schrödinger Equations网络公开度学科排名




书目名称Invariant Manifolds and Fibrations for Perturbed Nonlinear Schrödinger Equations被引频次




书目名称Invariant Manifolds and Fibrations for Perturbed Nonlinear Schrödinger Equations被引频次学科排名




书目名称Invariant Manifolds and Fibrations for Perturbed Nonlinear Schrödinger Equations年度引用




书目名称Invariant Manifolds and Fibrations for Perturbed Nonlinear Schrödinger Equations年度引用学科排名




书目名称Invariant Manifolds and Fibrations for Perturbed Nonlinear Schrödinger Equations读者反馈




书目名称Invariant Manifolds and Fibrations for Perturbed Nonlinear Schrödinger Equations读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:00:34 | 显示全部楼层
Charles Li,Stephen Wigginsver Vorhaben, wie wir das beispielsweise bei den Verfahren zur Nutzung der Meeresenergie gesehen haben. Längst hat sie in zahlreichen Ländern ihre Fähigkeit unter Beweis gestellt einen erheblichen Beitrag zur Energieversorgung zu leisten. Für manche von ihnen wäre diese ohne die Nutzung des talwärts
发表于 2025-3-22 03:58:04 | 显示全部楼层
发表于 2025-3-22 06:53:09 | 显示全部楼层
,The Perturbed Nonlinear Schrödinger Equation,perturbation parameter, α(> 0) and are real constants. The operator . is a regularized Laplacian, specifically given by . where . is the Fourier transform of . and . The regularizing coefficient β. is defined by . where α., and . are positive constants and . is a large fixed positive integer. When,
发表于 2025-3-22 10:51:16 | 显示全部楼层
Fibrations of the Persistent Invariant Manifolds,center-unstable manifold ., the . codimension 1 center-stable manifold ., and the . codimension 2 center manifold ., under the bumped perturbed flow (2.6.27). More specifically, . exists in .; moreover, it is overflowing invariant. . exists in .; moreover, it is inflowing invariant. Then . exists in
发表于 2025-3-22 16:24:42 | 显示全部楼层
Charles Li,Stephen WigginsPresents detailed and pedagogic proofs - The authors techniques can be applied to a broad class of infinite dimensional dynamical systems - Stephen Wiggins has authored many successful Springer titles
发表于 2025-3-22 19:40:01 | 显示全部楼层
发表于 2025-3-23 01:12:03 | 显示全部楼层
978-1-4612-7307-3Springer Science+Business Media New York 1997
发表于 2025-3-23 04:03:32 | 显示全部楼层
Invariant Manifolds and Fibrations for Perturbed Nonlinear Schrödinger Equations978-1-4612-1838-8Series ISSN 0066-5452 Series E-ISSN 2196-968X
发表于 2025-3-23 06:31:56 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 07:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表