找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Introduction to the Theory of Bases; Jürg T. Marti Book 1969 Springer-Verlag Berlin Heidelberg 1969 Banach space.Basis (Math.).Finite.Topo

[复制链接]
查看: 48640|回复: 45
发表于 2025-3-21 16:56:16 | 显示全部楼层 |阅读模式
书目名称Introduction to the Theory of Bases
编辑Jürg T. Marti
视频video
丛书名称Springer Tracts in Natural Philosophy
图书封面Titlebook: Introduction to the Theory of Bases;  Jürg T. Marti Book 1969 Springer-Verlag Berlin Heidelberg 1969 Banach space.Basis (Math.).Finite.Topo
描述Since the publication of Banach‘s treatise on the theory of linear operators, the literature on the theory of bases in topological vector spaces has grown enormously. Much of this literature has for its origin a question raised in Banach‘s book, the question whether every sepa­ rable Banach space possesses a basis or not. The notion of a basis employed here is a generalization of that of a Hamel basis for a finite dimensional vector space. For a vector space X of infinite dimension, the concept of a basis is closely related to the convergence of the series which uniquely correspond to each point of X. Thus there are different types of bases for X, according to the topology imposed on X and the chosen type of convergence for the series. Although almost four decades have elapsed since Banach‘s query, the conjectured existence of a basis for every separable Banach space is not yet proved. On the other hand, no counter examples have been found to show the existence of a special Banach space having no basis. However, as a result of the apparent overconfidence of a group of mathematicians, who it is assumed tried to solve the problem, we have many elegant works which show the tight conne
出版日期Book 1969
关键词Banach space; Basis (Math; ); Finite; Topologischer Vektorraum; Topology
版次1
doihttps://doi.org/10.1007/978-3-642-87140-5
isbn_softcover978-3-642-87142-9
isbn_ebook978-3-642-87140-5Series ISSN 0081-3877
issn_series 0081-3877
copyrightSpringer-Verlag Berlin Heidelberg 1969
The information of publication is updating

书目名称Introduction to the Theory of Bases影响因子(影响力)




书目名称Introduction to the Theory of Bases影响因子(影响力)学科排名




书目名称Introduction to the Theory of Bases网络公开度




书目名称Introduction to the Theory of Bases网络公开度学科排名




书目名称Introduction to the Theory of Bases被引频次




书目名称Introduction to the Theory of Bases被引频次学科排名




书目名称Introduction to the Theory of Bases年度引用




书目名称Introduction to the Theory of Bases年度引用学科排名




书目名称Introduction to the Theory of Bases读者反馈




书目名称Introduction to the Theory of Bases读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:39:19 | 显示全部楼层
发表于 2025-3-22 04:13:02 | 显示全部楼层
发表于 2025-3-22 06:10:57 | 显示全部楼层
Introduction to the Theory of Bases978-3-642-87140-5Series ISSN 0081-3877
发表于 2025-3-22 10:19:57 | 显示全部楼层
发表于 2025-3-22 16:11:39 | 显示全部楼层
发表于 2025-3-22 19:14:37 | 显示全部楼层
发表于 2025-3-22 23:30:06 | 显示全部楼层
发表于 2025-3-23 04:15:13 | 显示全部楼层
发表于 2025-3-23 05:59:21 | 显示全部楼层
Orthogonality, Projections and Equivalent Bases,nd, projections are very useful tools for existence proofs of bases. Indeed, they can be applied in the proof of the existence theorem of . given in the first paragraph. The theorem is quite essential in the theory and in the application of the theory of bases and, accordingly, we have to make refer
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-5 07:44
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表