找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Introduction to Tensor Products of Banach Spaces; Raymond A. Ryan Book 2002 Springer-Verlag London 2002 Banach Space.Tensor Products.appro

[复制链接]
楼主: Harding
发表于 2025-3-25 06:44:24 | 显示全部楼层
The Projective Tensor Product,near mappings just as the algebraic tensor product linearizes bilinear mappings. The projective tensor product derives its name from the fact that it behaves well with respect to quotient space constructions. The projective tensor product of ℓ. with . gives a representation of the space of absolutel
发表于 2025-3-25 10:15:57 | 显示全部楼层
The Injective Tensor Product,ctor valued functions and injective tensor products with ..(.) spaces provide an introduction to the Pettis integral. The duality theory of injective tensor products leads to the introduction of the important classes of integral bilinear forms and operators.
发表于 2025-3-25 11:39:24 | 显示全部楼层
The Approximation Property,ing issues concerning projective and injective tensor products. We then consider the following question: when are the projective or injective tensor products of reflexive spaces themselves reflexive? A satisfactory answer requires the use of the approximation property. Finally, we study tensor produ
发表于 2025-3-25 15:58:41 | 显示全部楼层
,The Radon-Nikodým Property,a Banach space. Those spaces for which the classical Radon—Nikodým Theorem extends to vector valued measures are said to have the Radon—Nikodým property. The identification of injective and projective tensor products of spaces of scalar measures in terms of spaces of vector measures sheds some light
发表于 2025-3-25 20:13:46 | 显示全部楼层
The Chevet-Saphar Tensor Products,tion of a tensor norm. We then investigate the Chevet-Saphar tensor norms, .. and ... The dual spaces of the corresponding tensor products lead us to the definition of the .-summing operators. We conclude with the fundamental Grothendieck Inequality and some of its applications.
发表于 2025-3-26 02:07:10 | 显示全部楼层
发表于 2025-3-26 05:32:28 | 显示全部楼层
发表于 2025-3-26 11:06:35 | 显示全部楼层
发表于 2025-3-26 16:33:25 | 显示全部楼层
发表于 2025-3-26 20:50:20 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 05:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表