找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Introduction to Stochastic Integration; K.L. Chung,R.J. Williams Textbook 20142nd edition Springer Science+Business Media New York 2014 Br

[复制链接]
查看: 21554|回复: 46
发表于 2025-3-21 19:28:24 | 显示全部楼层 |阅读模式
书目名称Introduction to Stochastic Integration
编辑K.L. Chung,R.J. Williams
视频video
概述Affordable, softcover reprint of a classic textbook.Authors‘ exposition consistently chooses clarity over brevity.Includes an expanded collection of exercises from the first edition.Includes supplemen
丛书名称Modern Birkhäuser Classics
图书封面Titlebook: Introduction to Stochastic Integration;  K.L. Chung,R.J. Williams Textbook 20142nd edition Springer Science+Business Media New York 2014 Br
描述.A highly readable introduction to stochastic integration and stochastic differential equations, this book combines developments of the basic theory with applications. It is written in a style suitable for the text of a graduate course in stochastic calculus, following a course in probability..Using the modern approach, the stochastic integral is defined for predictable integrands and local martingales; then It’s change of variable formula is developed for continuous martingales. Applications include a characterization of Brownian motion, Hermite polynomials of martingales, the Feynman–Kac functional and the Schrödinger equation. For Brownian motion, the topics of local time, reflected Brownian motion, and time change are discussed..New to the second edition are a discussion of the Cameron–Martin–Girsanov transformation and a final chapter which provides an introduction to stochastic differential equations, as well as many exercises for classroom use..This book willbe a valuable resource to all mathematicians, statisticians, economists, and engineers employing the modern tools of stochastic analysis..The text also proves that stochastic integration has made an important impact on m
出版日期Textbook 20142nd edition
关键词Brownian motion; Schrödinger equation; martingales; stochastic differential equations; stochastic integr
版次2
doihttps://doi.org/10.1007/978-1-4614-9587-1
isbn_softcover978-1-4614-9586-4
isbn_ebook978-1-4614-9587-1Series ISSN 2197-1803 Series E-ISSN 2197-1811
issn_series 2197-1803
copyrightSpringer Science+Business Media New York 2014
The information of publication is updating

书目名称Introduction to Stochastic Integration影响因子(影响力)




书目名称Introduction to Stochastic Integration影响因子(影响力)学科排名




书目名称Introduction to Stochastic Integration网络公开度




书目名称Introduction to Stochastic Integration网络公开度学科排名




书目名称Introduction to Stochastic Integration被引频次




书目名称Introduction to Stochastic Integration被引频次学科排名




书目名称Introduction to Stochastic Integration年度引用




书目名称Introduction to Stochastic Integration年度引用学科排名




书目名称Introduction to Stochastic Integration读者反馈




书目名称Introduction to Stochastic Integration读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:08:48 | 显示全部楼层
K.L. Chung,R.J. WilliamsAffordable, softcover reprint of a classic textbook.Authors‘ exposition consistently chooses clarity over brevity.Includes an expanded collection of exercises from the first edition.Includes supplemen
发表于 2025-3-22 03:20:30 | 显示全部楼层
Modern Birkhäuser Classicshttp://image.papertrans.cn/i/image/474228.jpg
发表于 2025-3-22 05:40:41 | 显示全部楼层
发表于 2025-3-22 12:14:35 | 显示全部楼层
978-1-4614-9586-4Springer Science+Business Media New York 2014
发表于 2025-3-22 16:25:58 | 显示全部楼层
Introduction to Stochastic Integration978-1-4614-9587-1Series ISSN 2197-1803 Series E-ISSN 2197-1811
发表于 2025-3-22 18:35:40 | 显示全部楼层
发表于 2025-3-22 23:22:18 | 显示全部楼层
发表于 2025-3-23 04:12:33 | 显示全部楼层
发表于 2025-3-23 07:51:06 | 显示全部楼层
Quadratic Variation Process,For the remainder of this book, we shall only consider integrators . which are . local martingales. By Proposition 1.9 these are automatically local ..-martingales. A more extensive treatment, encompassing right continuous integrators would require more elaborate considerations which are not suitable for inclusion in this short book.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 09:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表