找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Introduction to Stochastic Integration; Hui-Hsiung Kuo Textbook 2006 Springer-Verlag New York 2006 Brownian motion.Gaussian measure.Martin

[复制链接]
查看: 38616|回复: 35
发表于 2025-3-21 17:17:04 | 显示全部楼层 |阅读模式
书目名称Introduction to Stochastic Integration
编辑Hui-Hsiung Kuo
视频videohttp://file.papertrans.cn/475/474226/474226.mp4
概述Provides a concise introduction to the theory of stochastic integration, also called the Ito calculus.Closes the gap between more technically advanced books like Karatzas and Shreve (Springer) and les
丛书名称Universitext
图书封面Titlebook: Introduction to Stochastic Integration;  Hui-Hsiung Kuo Textbook 2006 Springer-Verlag New York 2006 Brownian motion.Gaussian measure.Martin
描述In the Leibniz–Newton calculus, one learns the di?erentiation and integration of deterministic functions. A basic theorem in di?erentiation is the chain rule, which gives the derivative of a composite of two di?erentiable functions. The chain rule, when written in an inde?nite integral form, yields the method of substitution. In advanced calculus, the Riemann–Stieltjes integral is de?ned through the same procedure of “partition-evaluation-summation-limit” as in the Riemann integral. In dealing with random functions such as functions of a Brownian motion, the chain rule for the Leibniz–Newton calculus breaks down. A Brownian motionmovessorapidlyandirregularlythatalmostallofitssamplepathsare nowhere di?erentiable. Thus we cannot di?erentiate functions of a Brownian motion in the same way as in the Leibniz–Newton calculus. In 1944 Kiyosi Itˆ o published the celebrated paper “Stochastic Integral” in the Proceedings of the Imperial Academy (Tokyo). It was the beginning of the Itˆ o calculus, the counterpart of the Leibniz–Newton calculus for random functions. In this six-page paper, Itˆ o introduced the stochastic integral and a formula, known since then as Itˆ o’s formula. The Itˆ o fo
出版日期Textbook 2006
关键词Brownian motion; Gaussian measure; Martingale; Measure; Probability theory; Stochastic Differential Equat
版次1
doihttps://doi.org/10.1007/0-387-31057-6
isbn_softcover978-0-387-28720-1
isbn_ebook978-0-387-31057-2Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag New York 2006
The information of publication is updating

书目名称Introduction to Stochastic Integration影响因子(影响力)




书目名称Introduction to Stochastic Integration影响因子(影响力)学科排名




书目名称Introduction to Stochastic Integration网络公开度




书目名称Introduction to Stochastic Integration网络公开度学科排名




书目名称Introduction to Stochastic Integration被引频次




书目名称Introduction to Stochastic Integration被引频次学科排名




书目名称Introduction to Stochastic Integration年度引用




书目名称Introduction to Stochastic Integration年度引用学科排名




书目名称Introduction to Stochastic Integration读者反馈




书目名称Introduction to Stochastic Integration读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:06:27 | 显示全部楼层
发表于 2025-3-22 03:17:38 | 显示全部楼层
rs, practitioners, scholars and researchers interested in or working on any aspect of migration in any field. It should be particularly useful for people seeking information and knowledge about migration from f978-94-007-6179-7
发表于 2025-3-22 06:30:25 | 显示全部楼层
发表于 2025-3-22 09:38:58 | 显示全部楼层
发表于 2025-3-22 15:59:31 | 显示全部楼层
发表于 2025-3-22 17:21:37 | 显示全部楼层
发表于 2025-3-22 21:33:43 | 显示全部楼层
发表于 2025-3-23 05:26:12 | 显示全部楼层
发表于 2025-3-23 08:52:31 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-5 03:35
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表