找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Introduction to Statistics and Data Analysis; With Exercises, Solu Christian Heumann,Michael Schomaker,Shalabh Textbook 2022Latest edition

[复制链接]
楼主: False-Negative
发表于 2025-3-25 06:00:59 | 显示全部楼层
发表于 2025-3-25 10:36:55 | 显示全部楼层
发表于 2025-3-25 11:56:20 | 显示全部楼层
Causalitycteristics of the underlying populations generating the data (Parts II and III). We introduced concepts of association, correlation, dependence and independence, conditional and marginal probabilities, likelihood, odds ratios and other notions to understand the joint behaviour of variables.
发表于 2025-3-25 19:01:28 | 显示全部楼层
Frequency Measures and Graphical Representation of DataIn Chapter 1, we highlighted that different variables contain different levels of information. When summarizing or visualizing one or more variable(s), it is this information which determines the appropriate statistical methods to use.
发表于 2025-3-26 00:00:38 | 显示全部楼层
Measures of Central Tendency and DispersionA data set may contain many variables and observations. However, we are not always interested in each of the measured values but rather in a few summary measures of the data. Statistical functions fulfill the purpose of summarizing the data in a meaningful yet concise way.
发表于 2025-3-26 01:15:25 | 显示全部楼层
发表于 2025-3-26 04:49:05 | 显示全部楼层
Linear RegressionWe learnt about various measures of association in Chap. .. Such measures are used to understand the degree of . or . between two variables.
发表于 2025-3-26 09:55:29 | 显示全部楼层
Logistic RegressionIn Chap. ., we introduced the linear regression model to describe the association between a metric response variable . and a metric covariate ., assuming a linear relationship between . and . at first. Note that a random variable is typically denoted in uppercase, say ., and its realization is denoted in lowercase, say ..
发表于 2025-3-26 13:38:22 | 显示全部楼层
发表于 2025-3-26 20:09:35 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 19:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表