找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Introduction to Smooth Manifolds; John M. Lee Textbook 20031st edition Springer Science+Business Media New York 2003 Algebra.Cohomology.De

[复制链接]
楼主: JOLT
发表于 2025-3-27 00:54:59 | 显示全部楼层
De Rham Cohomology, of the manifold, connected with the existence of “holes” of higher dimensions. Making this dependence quantitative leads to a new set of invariants of smooth manifolds, called the de Rham cohomology groups, which are the subject of this chapter.
发表于 2025-3-27 02:20:57 | 显示全部楼层
Smooth Manifolds,alculus. The most familiar examples, aside from Euclidean spaces themselves, are smooth plane curves such as circles and parabolas, and smooth surfaces such as spheres, tori, paraboloids, ellipsoids, and hyperboloids. Higher-dimensional examples include the set of unit vectors in ℝ. (the .-sphere) a
发表于 2025-3-27 09:13:48 | 显示全部楼层
发表于 2025-3-27 11:53:27 | 显示全部楼层
Vector Bundles,rd coordinates we constructed on . make it look, locally, like the Cartesian product of an open subset of . with ℝ.. As we will see later in the book, this kind of structure arises quite frequently—a collection of vector spaces, one for each point in ., glued together in a way that looks . like the
发表于 2025-3-27 17:32:35 | 显示全部楼层
The Cotangent Bundle,tangent space at a point . ∈ .. The space of all covectors at . is a vector space called the cotangent space at .; in linear-algebraic terms, it is the dual space to .... The union of all cotangent spaces at all points of . is a vector bundle called the cotangent bundle.
发表于 2025-3-27 21:11:10 | 显示全部楼层
发表于 2025-3-27 23:59:09 | 显示全部楼层
发表于 2025-3-28 05:02:06 | 显示全部楼层
发表于 2025-3-28 08:58:31 | 显示全部楼层
发表于 2025-3-28 10:40:25 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 23:49
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表