找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Introduction to Riemannian Manifolds; John M. Lee Textbook 2018Latest edition Springer Nature Switzerland AG 2018 Riemannian geometry.curv

[复制链接]
楼主: infection
发表于 2025-3-26 23:33:04 | 显示全部楼层
发表于 2025-3-27 04:15:37 | 显示全部楼层
Graduate Texts in Mathematicshttp://image.papertrans.cn/i/image/474135.jpg
发表于 2025-3-27 08:51:06 | 显示全部楼层
Model Riemannian Manifolds,folds” that should help to motivate the general theory. These manifolds are distinguished by having a high degree of symmetry. We begin by describing the most symmetric model spaces of all—Euclidean spaces, spheres, and hyperbolic spaces. Then we explore some more general classes of Riemannian manifolds with symmetry.
发表于 2025-3-27 11:45:55 | 显示全部楼层
,The Gauss–Bonnet Theorem,ms in Riemannian geometry, it asserts the equality of two very differently defined quantities on a compact Riemannian 2-manifold: the integral of the Gaussian curvature, which is determined by the local geometry, and . times the Euler characteristic, which is a global topological invariant.
发表于 2025-3-27 16:51:32 | 显示全部楼层
978-3-030-80106-9Springer Nature Switzerland AG 2018
发表于 2025-3-27 19:18:45 | 显示全部楼层
Introduction to Riemannian Manifolds978-3-319-91755-9Series ISSN 0072-5285 Series E-ISSN 2197-5612
发表于 2025-3-27 23:24:58 | 显示全部楼层
发表于 2025-3-28 04:57:39 | 显示全部楼层
发表于 2025-3-28 06:50:38 | 显示全部楼层
发表于 2025-3-28 11:22:32 | 显示全部楼层
Connections,Before defining a notion of curvature that makes sense on arbitrary Riemannian manifolds, we need to study ., the generalizations to Riemannian manifolds of straight lines in Euclidean space. In this chapter, we introduce a new geometric construction called a ., which is an essential tool for defining geodesics.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 22:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表