找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Introduction to Nonlinear Dispersive Equations; Felipe Linares,Gustavo Ponce Textbook 2015Latest edition Springer-Verlag New York 2015 Kor

[复制链接]
查看: 31552|回复: 42
发表于 2025-3-21 19:09:27 | 显示全部楼层 |阅读模式
书目名称Introduction to Nonlinear Dispersive Equations
编辑Felipe Linares,Gustavo Ponce
视频video
概述Includes a nice selection of topics.Contains a large section of non-standard exercises.Offers accessible presentation of key tools in harmonic and Fourier analysis.Includes supplementary material:
丛书名称Universitext
图书封面Titlebook: Introduction to Nonlinear Dispersive Equations;  Felipe Linares,Gustavo Ponce Textbook 2015Latest edition Springer-Verlag New York 2015 Kor
描述.This textbook introduces the well-posedness theory for initial-value problems of nonlinear, dispersive partial differential equations, with special focus on two key models, the Korteweg–de Vries equation and the nonlinear Schrödinger equation. A concise and self-contained treatment of background material (the Fourier transform, interpolation theory, Sobolev spaces, and the linear Schrödinger equation) prepares the reader to understand the main topics covered: the initial-value problem for the nonlinear Schrödinger equation and the generalized Korteweg–de Vries equation, properties of their solutions, and a survey of general classes of nonlinear dispersive equations of physical and mathematical significance. Each chapter ends with an expert account of recent developments and open problems, as well as exercises. The final chapter gives a detailed exposition of local well-posedness for the nonlinear Schrödinger equation, taking the reader to the forefront of recent research..Thesecond edition of .Introduction to Nonlinear Dispersive Equations. builds upon the success of the first edition by the addition of updated material on the main topics, an expanded bibliography, and new exercis
出版日期Textbook 2015Latest edition
关键词Korteweg-de Vries Equation; Marcinkiewicz interpolation theorem; Riesz–Thorin convexity theorem; Stein
版次2
doihttps://doi.org/10.1007/978-1-4939-2181-2
isbn_softcover978-1-4939-2180-5
isbn_ebook978-1-4939-2181-2Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag New York 2015
The information of publication is updating

书目名称Introduction to Nonlinear Dispersive Equations影响因子(影响力)




书目名称Introduction to Nonlinear Dispersive Equations影响因子(影响力)学科排名




书目名称Introduction to Nonlinear Dispersive Equations网络公开度




书目名称Introduction to Nonlinear Dispersive Equations网络公开度学科排名




书目名称Introduction to Nonlinear Dispersive Equations被引频次




书目名称Introduction to Nonlinear Dispersive Equations被引频次学科排名




书目名称Introduction to Nonlinear Dispersive Equations年度引用




书目名称Introduction to Nonlinear Dispersive Equations年度引用学科排名




书目名称Introduction to Nonlinear Dispersive Equations读者反馈




书目名称Introduction to Nonlinear Dispersive Equations读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:43:14 | 显示全部楼层
发表于 2025-3-22 02:32:20 | 显示全部楼层
发表于 2025-3-22 04:59:36 | 显示全部楼层
发表于 2025-3-22 12:08:47 | 显示全部楼层
发表于 2025-3-22 15:14:23 | 显示全部楼层
,The Nonlinear Schrödinger Equation: Local Theory,In this chapter, we shall study local well-posedness of the nonlinear initial value problem (IVP) associated to the Schrödinger equation. We discuss results for data in ., ., and other well-posedness issues. We end the chapter with some remarks and comments regarding the issues discussed in the previous sections.
发表于 2025-3-22 18:15:32 | 显示全部楼层
发表于 2025-3-23 00:06:21 | 显示全部楼层
Asymptotic Behavior of Solutions for the k-gKdV Equations,This chapter is concerned with the longtime behavior of solutions to the initial value problem (IVP) associated to the k-generalized Korteweg-de Vries (k-gKdV) equations. We shall restrict ourselves to consider only real solutions of the associated IVP. We will discuss global well-posedness results as well as some blow-up results.
发表于 2025-3-23 02:07:26 | 显示全部楼层
发表于 2025-3-23 08:51:40 | 显示全部楼层
The Fourier Transform,case . is considered in Section 1.2. The space of tempered distributions is briefly considered in Section 1.3. Finally, Sections 1.4 and 1.5 give an introduction to the study of oscillatory integrals in one dimension and some applications, respectively.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 02:22
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表