找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Introduction to Learning Classifier Systems; Ryan J. Urbanowicz,Will N. Browne Book 2017 The Author(s) 2017 Learning Classifier System (LC

[复制链接]
查看: 44560|回复: 35
发表于 2025-3-21 18:55:55 | 显示全部楼层 |阅读模式
书目名称Introduction to Learning Classifier Systems
编辑Ryan J. Urbanowicz,Will N. Browne
视频video
概述Learning Classifier Systems (LCSs) are a powerful and well-established rule-based machine learning technique but they have yet to be widely adopted due to a steep learning curve, their rich nature, an
丛书名称SpringerBriefs in Intelligent Systems
图书封面Titlebook: Introduction to Learning Classifier Systems;  Ryan J. Urbanowicz,Will N. Browne Book 2017 The Author(s) 2017 Learning Classifier System (LC
描述.This accessible introduction shows the reader how to understand, implement, adapt, and apply Learning Classifier Systems (LCSs) to interesting and difficult problems. The text builds an understanding from basic ideas and concepts. The authors first explore learning through environment interaction, and then walk through the components of LCS that form this rule-based evolutionary algorithm. The applicability and adaptability of these methods is highlighted by providing descriptions of common methodological alternatives for different components that are suited to different types of problems from data mining to autonomous robotics. . .The authors have also paired exercises and a simple educational LCS (eLCS) algorithm (implemented in Python) with this book. It is suitable for courses or self-study by advanced undergraduate and postgraduate students in subjects such as Computer Science, Engineering, Bioinformatics, and Cybernetics, and by researchers, data analysts, andmachine learning practitioners..
出版日期Book 2017
关键词Learning Classifier System (LCS); Computational Intelligence; Machine Learning (ML); Genetics-Based Mac
版次1
doihttps://doi.org/10.1007/978-3-662-55007-6
isbn_softcover978-3-662-55006-9
isbn_ebook978-3-662-55007-6Series ISSN 2196-548X Series E-ISSN 2196-5498
issn_series 2196-548X
copyrightThe Author(s) 2017
The information of publication is updating

书目名称Introduction to Learning Classifier Systems影响因子(影响力)




书目名称Introduction to Learning Classifier Systems影响因子(影响力)学科排名




书目名称Introduction to Learning Classifier Systems网络公开度




书目名称Introduction to Learning Classifier Systems网络公开度学科排名




书目名称Introduction to Learning Classifier Systems被引频次




书目名称Introduction to Learning Classifier Systems被引频次学科排名




书目名称Introduction to Learning Classifier Systems年度引用




书目名称Introduction to Learning Classifier Systems年度引用学科排名




书目名称Introduction to Learning Classifier Systems读者反馈




书目名称Introduction to Learning Classifier Systems读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:45:39 | 显示全部楼层
发表于 2025-3-22 00:24:42 | 显示全部楼层
发表于 2025-3-22 06:01:33 | 显示全部楼层
Applying LCSs,ed for certain types of problems, such as data mining or robot control. Specifically, this chapter offers a basic setup guide discussing logistics, design considerations, setting run parameters, tuning for performance, and troubleshooting. This book concludes with a summary of useful LCS resources b
发表于 2025-3-22 12:10:45 | 显示全部楼层
发表于 2025-3-22 14:29:41 | 显示全部楼层
Book 2017with this book. It is suitable for courses or self-study by advanced undergraduate and postgraduate students in subjects such as Computer Science, Engineering, Bioinformatics, and Cybernetics, and by researchers, data analysts, andmachine learning practitioners..
发表于 2025-3-22 21:03:56 | 显示全部楼层
发表于 2025-3-22 23:42:50 | 显示全部楼层
发表于 2025-3-23 03:40:36 | 显示全部楼层
SpringerBriefs in Intelligent Systemshttp://image.papertrans.cn/i/image/473823.jpg
发表于 2025-3-23 08:12:34 | 显示全部楼层
https://doi.org/10.1007/978-3-662-55007-6Learning Classifier System (LCS); Computational Intelligence; Machine Learning (ML); Genetics-Based Mac
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 23:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表