找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Introduction to Infinity-Categories; Markus Land Textbook 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to

[复制链接]
查看: 35809|回复: 35
发表于 2025-3-21 18:30:33 | 显示全部楼层 |阅读模式
书目名称Introduction to Infinity-Categories
编辑Markus Land
视频videohttp://file.papertrans.cn/474/473775/473775.mp4
概述Presents a high-level topic in an accessible style.Includes exercises.Leads the reader from the theory basics to more advanced results
丛书名称Compact Textbooks in Mathematics
图书封面Titlebook: Introduction to Infinity-Categories;  Markus Land Textbook 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to
描述This textbook is an introduction to the theory of infinity-categories, a tool used in many aspects of modern pure mathematics. It treats the basics of the theory and supplies all the necessary details while leading the reader along a streamlined path from the basic definitions to more advanced results such as the very important adjoint functor theorems. .The book is based on lectures given by the author on the topic. While the material itself is well-known to experts, the presentation of the material is, in parts, novel and accessible to non-experts. Exercises complement this textbook that can be used both in a classroom setting at the graduate level and as an introductory text for the interested reader.
出版日期Textbook 2021
关键词infinity-categories; functors; limits and colimits; adjunctions; adjoint functor theorems
版次1
doihttps://doi.org/10.1007/978-3-030-61524-6
isbn_softcover978-3-030-61523-9
isbn_ebook978-3-030-61524-6Series ISSN 2296-4568 Series E-ISSN 2296-455X
issn_series 2296-4568
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Introduction to Infinity-Categories影响因子(影响力)




书目名称Introduction to Infinity-Categories影响因子(影响力)学科排名




书目名称Introduction to Infinity-Categories网络公开度




书目名称Introduction to Infinity-Categories网络公开度学科排名




书目名称Introduction to Infinity-Categories被引频次




书目名称Introduction to Infinity-Categories被引频次学科排名




书目名称Introduction to Infinity-Categories年度引用




书目名称Introduction to Infinity-Categories年度引用学科排名




书目名称Introduction to Infinity-Categories读者反馈




书目名称Introduction to Infinity-Categories读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:11:54 | 显示全部楼层
发表于 2025-3-22 03:50:29 | 显示全部楼层
(Co)Cartesian Fibrations and the Construction of Functors,inner fibration between simplicial sets. (Co)cartesian fibrations are natural generalizations of (left) right fibrations, and they will be a key player in the straightening-unstraightening equivalence (which we discuss to some extend only in this book).
发表于 2025-3-22 05:56:43 | 显示全部楼层
Adjunctions and Adjoint Functor Theorems,ly be described by choosing a binatural transformation of bivariant mapping-space functors. We will give several sufficient criteria for a fixed functor . to admit an adjoint, similarly as in ordinary category theory, and discuss some examples. Furthermore, we will prove that (co)limits (if they exi
发表于 2025-3-22 09:47:56 | 显示全部楼层
ts of the contact, and observations and evaluations made during these meetings, were read widely among the public and were used by philosophers, naturalists and eventually scientists to advance theories about the nature of humanity, society and ‘civilisation’. Yet in the moment, these encounters wer
发表于 2025-3-22 13:55:17 | 显示全部楼层
发表于 2025-3-22 17:31:24 | 显示全部楼层
发表于 2025-3-22 21:30:28 | 显示全部楼层
发表于 2025-3-23 01:50:08 | 显示全部楼层
发表于 2025-3-23 07:08:53 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-4 16:37
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表