找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Introduction to Conformal Invariance and Its Applications to Critical Phenomena; P. Christe,M. Henkel Book 1993 Springer-Verlag Berlin Hei

[复制链接]
楼主: 无法生存
发表于 2025-3-27 00:00:10 | 显示全部楼层
发表于 2025-3-27 01:35:46 | 显示全部楼层
Conformal Invariance in the Ising Quantum Chain,eld theory in chapter 6, this example further illustrates the general machinery used for applying conformal invariance and useful insight will be obtained by comparing these two different approaches to the same problem.
发表于 2025-3-27 08:17:35 | 显示全部楼层
发表于 2025-3-27 10:12:48 | 显示全部楼层
发表于 2025-3-27 16:25:14 | 显示全部楼层
发表于 2025-3-27 19:03:59 | 显示全部楼层
发表于 2025-3-28 00:15:29 | 显示全部楼层
The Hamiltonian Limit and Universality,s useful for numerical investigations. At the same time, we also show, in the context of the Ising model, that this way the universality between different model realizations of systems in the same universality class becomes explicit in yielding the same quantum Hamiltonian. For reviews, see [227, 177].
发表于 2025-3-28 04:28:43 | 显示全部楼层
Numerical Techniques,eliably in the context of critical quantum chains and do not attempt to give a systematic overview on the numerous numerical algorithms which exist in the literature. These methods can be applied independently of the conformal invariance of the model, but throughout this chapter, we shall take . to be defined on a quantum . of . sites.
发表于 2025-3-28 07:46:52 | 显示全部楼层
Modular Invariance,just the 5 found can be realized. A part of the explanation comes from the locality requirement for the correlation functions discussed in chapters 5–7. A finer explanation for this selection comes from the requirement of . for the partition function. The presentation follows the work of Cardy [80, 81, G14].
发表于 2025-3-28 12:27:44 | 显示全部楼层
Conformal Perturbation Theory,of these and shall show how finite-size corrections and finite-size scaling functions can be derived from the known operator content of a given model. These techniques do not require the integrability of the system under consideration.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 11:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表