书目名称 | Introduction to Coding Theory | 编辑 | J. H. Lint | 视频video | | 丛书名称 | Graduate Texts in Mathematics | 图书封面 |  | 描述 | It is gratifying that this textbook is still sufficiently popular to warrant a third edition. I have used the opportunity to improve and enlarge the book. When the second edition was prepared, only two pages on algebraic geometry codes were added. These have now been removed and replaced by a relatively long chapter on this subject. Although it is still only an introduction, the chapter requires more mathematical background of the reader than the remainder of this book. One of the very interesting recent developments concerns binary codes defined by using codes over the alphabet 7l.4• There is so much interest in this area that a chapter on the essentials was added. Knowledge of this chapter will allow the reader to study recent literature on 7l. -codes. 4 Furthermore, some material has been added that appeared in my Springer Lec ture Notes 201, but was not included in earlier editions of this book, e. g. Generalized Reed-Solomon Codes and Generalized Reed-Muller Codes. In Chapter 2,a section on "Coding Gain" ( the engineer‘s justification for using error-correcting codes) was added. For the author, preparing this third edition was a most welcome return to mathematics after seven | 出版日期 | Textbook 1999Latest edition | 关键词 | Shannon; code; coding theory; error-correcting code; linear optimization; combinatorics | 版次 | 3 | doi | https://doi.org/10.1007/978-3-642-58575-3 | isbn_softcover | 978-3-642-63653-0 | isbn_ebook | 978-3-642-58575-3Series ISSN 0072-5285 Series E-ISSN 2197-5612 | issn_series | 0072-5285 | copyright | Springer-Verlag Berlin Heidelberg 1999 |
The information of publication is updating
|
|