找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Introduction to Bayesian Tracking and Particle Filters; Lawrence D. Stone,Roy L. Streit,Stephen L. Anderso Book 2023 The Editor(s) (if app

[复制链接]
查看: 24353|回复: 35
发表于 2025-3-21 18:18:23 | 显示全部楼层 |阅读模式
书目名称Introduction to Bayesian Tracking and Particle Filters
编辑Lawrence D. Stone,Roy L. Streit,Stephen L. Anderso
视频video
概述Provides a quick and insightful introduction to Bayesian Particle Filtering.Requires only basic knowledge of probability and statistics.Illustrates and motivates cardinal concepts with practical examp
丛书名称Studies in Big Data
图书封面Titlebook: Introduction to Bayesian Tracking and Particle Filters;  Lawrence D. Stone,Roy L. Streit,Stephen L. Anderso Book 2023 The Editor(s) (if app
描述.This book provides a quick but insightful introduction to Bayesian tracking and particle filtering for a person who has some background in probability and statistics and wishes to learn the basics of single-target tracking. It also introduces the reader to multiple target tracking by presenting useful approximate methods that are easy to implement compared to full-blown multiple target trackers..The book presents the basic concepts of Bayesian inference and demonstrates the power of the Bayesian method through numerous applications of particle filters to tracking and smoothing problems. It emphasizes target motion models that incorporate knowledge about the target’s behavior in a natural fashion rather than assumptions made for mathematical convenience..The background provided by this book allows a person to quickly become a productive member of a project team using Bayesian filtering and to develop new methods and techniques for problems the team may face..
出版日期Book 2023
关键词Particle Filters; Bayesian; Tracking; Smoothing; Kalman Filter
版次1
doihttps://doi.org/10.1007/978-3-031-32242-6
isbn_softcover978-3-031-32244-0
isbn_ebook978-3-031-32242-6Series ISSN 2197-6503 Series E-ISSN 2197-6511
issn_series 2197-6503
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Introduction to Bayesian Tracking and Particle Filters影响因子(影响力)




书目名称Introduction to Bayesian Tracking and Particle Filters影响因子(影响力)学科排名




书目名称Introduction to Bayesian Tracking and Particle Filters网络公开度




书目名称Introduction to Bayesian Tracking and Particle Filters网络公开度学科排名




书目名称Introduction to Bayesian Tracking and Particle Filters被引频次




书目名称Introduction to Bayesian Tracking and Particle Filters被引频次学科排名




书目名称Introduction to Bayesian Tracking and Particle Filters年度引用




书目名称Introduction to Bayesian Tracking and Particle Filters年度引用学科排名




书目名称Introduction to Bayesian Tracking and Particle Filters读者反馈




书目名称Introduction to Bayesian Tracking and Particle Filters读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:09:20 | 显示全部楼层
Bayesian Particle Filtering,, it shows that particle filters can be applied to solve problems other than tracking. The process of computing the posterior distribution on the target’s path given the measurements received in a fixed time interval . is called fixed interval smoothing and the resulting posterior distribution is th
发表于 2025-3-22 03:00:11 | 显示全部楼层
Simple Multiple Target Tracking,in multiple target tracking arise when the number of targets is uncertain and there is ambiguity in deciding which target generated which measurement or whether, in fact, the measurement was generated by a false target. This chapter presents a simplified non-linear Joint Probabilistic Data Associati
发表于 2025-3-22 08:10:13 | 显示全部楼层
Intensity Filters, intensity function that specifies the expected number of targets per unit state space. When this function is integrated over a subset of the state space, one obtains the expected number of targets in that subset. In Chap. ., the goal was to estimate a Bayesian probability distribution on the multip
发表于 2025-3-22 12:27:47 | 显示全部楼层
发表于 2025-3-22 16:25:19 | 显示全部楼层
Lawrence D. Stone,Roy L. Streit,Stephen L. Andersonr wesentlich stärker ausgeprägt ist als beim Gallium. Demgegenüber tritt der lithophile Charakter weniger in Erscheinung. Das entspricht auch beispielsweise dem metallchemischen Verhalten des Indiums; die Legierungen des Indiums zeigen weit weniger Ähnlichkeit mit denen des Gruppenhomologen Gallium
发表于 2025-3-22 19:01:16 | 显示全部楼层
发表于 2025-3-22 21:37:19 | 显示全部楼层
发表于 2025-3-23 05:11:06 | 显示全部楼层
978-3-031-32244-0The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-23 06:59:01 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 09:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表