找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Introduction to Analytic Number Theory; Tom M. Apostol Textbook 1976 Springer Science+Business Media New York 1976 Analytische Zahlentheor

[复制链接]
楼主: Dangle
发表于 2025-3-23 11:13:12 | 显示全部楼层
Periodic Arithmetical Functions and Gauss Sums,Let . be a positive integer. An arithmetical function . is said to be . (or .) if .for all integers .. If . is a period so is . for any integer . > 0. The smallest positive period of . is called the ..
发表于 2025-3-23 16:20:40 | 显示全部楼层
Primitive Roots,Let . and . be relatively prime integers, with . ≥ 1, and consider all the positive powers of ..We know, from the Euler — Fermat theorem, that a. ≡ 1 (mod .). However, there may be an earlier power a. such that a. ≡ 1 (mod .). We are interested in the smallest positive . with this property.
发表于 2025-3-23 20:04:20 | 显示全部楼层
发表于 2025-3-24 01:43:15 | 显示全部楼层
Analytic Proof of the Prime Number Theorem,The prime number theorem is equivalent to the statement . where .(.) is Chebyshev’s function,
发表于 2025-3-24 06:21:10 | 显示全部楼层
发表于 2025-3-24 07:00:47 | 显示全部楼层
Dirichlet Series and Euler Products,He deduced this from the fact that the zeta function .(.), given by.for real . > 1, tends to 0o as . → 1. In 1837 Dirichlet proved his celebrated theorem on primes in arithmetical progressions by studying the series.where . is a Dirichlet character and . > 1.
发表于 2025-3-24 14:33:33 | 显示全部楼层
发表于 2025-3-24 17:37:19 | 显示全部楼层
Introduction to Analytic Number Theory978-1-4757-5579-4Series ISSN 0172-6056 Series E-ISSN 2197-5604
发表于 2025-3-24 19:05:56 | 显示全部楼层
发表于 2025-3-24 23:41:39 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-17 22:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表