找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data ; 6th Joint Internatio M. Jorge Cardoso

[复制链接]
楼主: counterfeit
发表于 2025-3-25 05:22:58 | 显示全部楼层
Joseph G. Jacobs,Gabriel J. Brostow,Alex Freeman,Daniel C. Alexander,Eleftheria Panagiotaki. Equations and figurers quantify the phenomena being described and provide the reader with the tools to tradeoff various performance features. The discussions 978-3-031-00406-3978-3-031-01534-2Series ISSN 1932-6076 Series E-ISSN 1932-6084
发表于 2025-3-25 08:19:03 | 显示全部楼层
Alison Q. O’Neil,John T. Murchison,Edwin J. R. van Beek,Keith A. Goatman. Equations and figurers quantify the phenomena being described and provide the reader with the tools to tradeoff various performance features. The discussions 978-3-031-00406-3978-3-031-01534-2Series ISSN 1932-6076 Series E-ISSN 1932-6084
发表于 2025-3-25 14:44:59 | 显示全部楼层
0302-9743 and Visualization for Intravascular Imaging and Computer Assisted Stenting, CVII-STENT 2017, and the Second International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2017, held in conjunction with the 20th International Conference on Medical Imaging and C
发表于 2025-3-25 19:22:32 | 显示全部楼层
发表于 2025-3-25 22:54:16 | 显示全部楼层
发表于 2025-3-26 03:33:52 | 显示全部楼层
DCNN-Based Automatic Segmentation and Quantification of Aortic Thrombus Volume: Influence of the Trabus volume assessment, starting from its segmentation based on a Deep Convolutional Neural Network (DCNN) both pre-operatively and post-operatively. The aim is to investigate several training approaches to evaluate their influence in the thrombus volume characterization.
发表于 2025-3-26 06:12:40 | 显示全部楼层
Expected Exponential Loss for Gaze-Based Video and Volume Ground Truth Annotationmi-supervised setting using a novel Expected Exponential loss function. We show that our framework provides superior performances on a wide range of medical image settings compared to existing strategies and that our method can be combined with current crowd-sourcing paradigms as well.
发表于 2025-3-26 10:56:11 | 显示全部楼层
发表于 2025-3-26 15:51:09 | 显示全部楼层
发表于 2025-3-26 20:08:27 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-14 10:48
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表