找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Intersection Theory; William Fulton Book 1984 Springer-Verlag Berlin Heidelberg 1984 Algebraische Geometrie.Blowing up.Divisor.Schnittheor

[复制链接]
楼主: satisficer
发表于 2025-3-28 14:47:40 | 显示全部楼层
发表于 2025-3-28 19:08:58 | 显示全部楼层
发表于 2025-3-28 23:01:58 | 显示全部楼层
发表于 2025-3-29 05:18:49 | 显示全部楼层
Riemann-Roch for Non-singular Varieties,The Grothendieck-Riemann-Roch theorem (GRR) states that for a proper morphism .: . → . of non-singular varieties,.for all α in the Grothendieck group of vector bundles, or of coherent sheaves, on .. When . is a point, one recovers Hirzebruch’s formula (HRR) for the Euler characteristic of a vector bundle . on .:..
发表于 2025-3-29 10:59:26 | 显示全部楼层
发表于 2025-3-29 12:20:33 | 显示全部楼层
Intersection Multiplicities,f dimension . − ., the intersection multiplicity . (., . · .; .) is defined to be the coefficient of . in the intersection class . · . ∈ ..(.). The intersection multiplicity is a positive integer, satisfying..
发表于 2025-3-29 18:05:39 | 显示全部楼层
Positivity,rsection class has a corresponding decomposition into Σ .. α., α. ∈ ..(..), (..)=Supp(..). If the bundle . is suitably positive, one can deduce corresponding positivity of the intersection classes, even if the intersections are not proper.
发表于 2025-3-29 22:41:13 | 显示全部楼层
Bivariant Intersection Theory,or all .′ → ., .′ = . ×..′, all .. In this chapter we formalize the study of such operations. For any morphism .: . → ., a . in . is a collection of homomorphisms from ...′ to ...′, for all .′ → ., all ., compatible with push-forward, pull-back, and intersection products.
发表于 2025-3-30 01:24:03 | 显示全部楼层
Riemann-Roch for Singular Varieties,ff a closed subset .. This produces a localized Chern character.. which lives in the bivariant group . (.→.).. For each class α ∈ ..., this gives a class.whose image in .... is ∑(−1). ch (..) ∩ α. The properties needed for Riemann-Roch, in particular the invariance under rational deformation, follow from the bivariant nature of ..
发表于 2025-3-30 06:01:10 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 20:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表