找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches; Antonio Lepore,Biagio Palumbo,Jean-Michel Poggi Book 2022

[复制链接]
查看: 34438|回复: 35
发表于 2025-3-21 19:47:03 | 显示全部楼层 |阅读模式
书目名称Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches
编辑Antonio Lepore,Biagio Palumbo,Jean-Michel Poggi
视频video
概述Gives an introduction to interpretability in statistical and machine learning approaches for Industry 4.0.Provides different views in connection with explainability, generalizability and sensitivity a
图书封面Titlebook: Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches;  Antonio Lepore,Biagio Palumbo,Jean-Michel Poggi Book 2022
描述This volume provides readers with a compact, stimulating and multifaceted introduction to interpretability, a key issue for developing insightful statistical and machine learning approaches as well as for communicating modelling results in business and industry..Different views in the context of Industry 4.0 are offered in connection with the concepts of explainability of machine learning tools, generalizability of model outputs and sensitivity analysis. Moreover, the book explores the integration of Artificial Intelligence and robust analysis of variance for big data mining and monitoring in Additive Manufacturing, and sheds new light on interpretability via random forests and flexible generalized additive models together with related software resources and real-world examples..
出版日期Book 2022
关键词Generalized Additive Models; Machine Learning; Sensitivity; Additive Manufacturing Systems; Interpretabi
版次1
doihttps://doi.org/10.1007/978-3-031-12402-0
isbn_softcover978-3-031-12401-3
isbn_ebook978-3-031-12402-0
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches影响因子(影响力)




书目名称Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches影响因子(影响力)学科排名




书目名称Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches网络公开度




书目名称Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches网络公开度学科排名




书目名称Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches被引频次




书目名称Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches被引频次学科排名




书目名称Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches年度引用




书目名称Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches年度引用学科排名




书目名称Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches读者反馈




书目名称Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:38:10 | 显示全部楼层
发表于 2025-3-22 03:40:33 | 显示全部楼层
发表于 2025-3-22 08:23:09 | 显示全部楼层
发表于 2025-3-22 10:37:40 | 显示全部楼层
发表于 2025-3-22 16:58:34 | 显示全部楼层
Interpretability in Generalized Additive Models,o interactively build and improve GAM and GAMLSS models via the mgcv and mgcViz R packages, which exploit their modular and interpretable structure. The final part of the chapter shows how to exploit the additive structure of GAMs to build powerful predictive models, by using random forests and online aggregation methods.
发表于 2025-3-22 19:24:50 | 显示全部楼层
Interpretability via Random Forests,reiman’s MDA (Mean Decrease Accuracy) shows that this measure is strongly biased using a sensitivity analysis perspective. The Sobol-MDA algorithm is introduced to fix the MDA flaws, replacing permutations by projections. An extension to Shapley effects, an efficient importance measure when input va
发表于 2025-3-23 00:12:17 | 显示全部楼层
Bertrand Iooss,Ron Kenett,Piercesare Secchi internationaler Wettbewerbsvorteile in den Vordergrund. Das hier vorgestellte Buchprojekt geht einen anderen Weg. Die Anforderungen an den Inhalt des Buches leiten sich dabei aus den zukünftigen Tätigkeitsfelde978-3-8349-0404-1978-3-8349-9548-3
发表于 2025-3-23 04:49:18 | 显示全部楼层
S. N. Wood,Y. Goude,M. Fasiolo internationaler Wettbewerbsvorteile in den Vordergrund. Das hier vorgestellte Buchprojekt geht einen anderen Weg. Die Anforderungen an den Inhalt des Buches leiten sich dabei aus den zukünftigen Tätigkeitsfelde978-3-8349-0404-1978-3-8349-9548-3
发表于 2025-3-23 08:32:00 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 22:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表