找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Intermediate Real Analysis; Emanuel Fischer Textbook 1983 Springer-Verlag New York, Inc. 1983 Differentialrechnung.Fischer.Integralrechnun

[复制链接]
楼主: 佯攻
发表于 2025-3-23 12:00:38 | 显示全部楼层
Limit of Functions,In Chapter III we dealt with limits of real sequences. These are real-valued functions whose domains are essentially ℤ. or ℤ.. In this chapter we treat limits of real-valued functions of a real variable whose domains are not necessarily confined to ℤ. or ℤ.. Of special interest are functions whose domains are intervals.
发表于 2025-3-23 15:16:26 | 显示全部楼层
发表于 2025-3-23 20:33:05 | 显示全部楼层
Derivatives,Limits often arise from considering the derivative of a function at a point.
发表于 2025-3-24 02:12:05 | 显示全部楼层
发表于 2025-3-24 05:01:25 | 显示全部楼层
,L’Hôpital’s Rule—Taylor’s Theorem,. (Cauchy’s Mean-Value Theorem). . [.,.], . (.; .) .′(.) ≠ 0 . ∈ (.; .), . (1) .(.) ≠ .(.); (2) . ∈ (.; .) ..(3) .(.) ≠ .(.), .. (1.1), .′(.) and .′(.) ..
发表于 2025-3-24 08:04:51 | 显示全部楼层
The Complex Numbers. Trigonometric Sums. Infinite Products,In order to solve the equation.where ., ., . are real numbers and . ≠ 0, for . ∈ ℝ, we use the identity.obtained by “completing the square.” A real number . satisfying (1.1) must satisfy
发表于 2025-3-24 13:24:14 | 显示全部楼层
Sequences and Series of Functions II,We consider power series . and . with respective radii of convergence . and . and write . = min{., .}. We also assume that . > 0 so that . ⩾ . > 0 and . ⩾ . > 0.
发表于 2025-3-24 16:53:52 | 显示全部楼层
发表于 2025-3-24 19:33:00 | 显示全部楼层
The Riemann Integral II,We now consider the legitimacy of passing to the limit under the integral sign. If the sequence 〈.〉 of .-integrable functions converges to a limit . on an interval [., .] does it necessarily follow that
发表于 2025-3-24 23:42:48 | 显示全部楼层
Improper Integrals. Elliptic Integrals and Functions,When . is .-integrable over [., .] then its indefinite integral ., defined as.is continuous on [.,.] (Theorem XIII.6.3). Hence,
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 21:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表