找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Interactive Theorem Proving; Third International Lennart Beringer,Amy Felty Conference proceedings 2012 Springer-Verlag Berlin Heidelberg

[复制链接]
楼主: metamorphose
发表于 2025-3-25 03:19:25 | 显示全部楼层
Formalization of Shannon’s Theorems in SSReflect-Coq we produce the first formal proofs of the source coding theorem (that introduces the entropy as the bound for lossless compression), and the direct part of the more difficult channel coding theorem (that introduces the capacity as the bound for reliable communication over a noisy channel).
发表于 2025-3-25 10:33:44 | 显示全部楼层
发表于 2025-3-25 14:29:48 | 显示全部楼层
发表于 2025-3-25 17:22:29 | 显示全部楼层
发表于 2025-3-25 22:05:42 | 显示全部楼层
A Refinement-Based Approach to Computational Algebra in ,ons on more efficient data structures and linked to their abstract counterparts. We illustrate this methodology on key applications: matrix rank computation, Winograd’s fast matrix product, Karatsuba’s polynomial multiplication, and the gcd of multivariate polynomials.
发表于 2025-3-26 02:33:25 | 显示全部楼层
Applying Data Refinement for Monadic Programs to Hopcroft’s Algorithmd, efficient code in various languages, including Standard ML, Haskell and Scala..In order to demonstrate the practical applicability of our framework, we present a verified implementation of Hopcroft’s algorithm for automata minimisation.
发表于 2025-3-26 04:41:39 | 显示全部楼层
发表于 2025-3-26 08:56:21 | 显示全部楼层
A Cantor Trio: Denumerability, the Reals, and the Real Algebraic NumbersThe third proof is of the existence of real transcendental (i.e., non-algebraic) numbers. It also appeared in Cantor’s 1874 paper, as a corollary to the non-denumerability of the reals. What Cantor ingeniously showed is that the algebraic numbers are denumerable, so every open interval must contain at least one transcendental number.
发表于 2025-3-26 14:14:03 | 显示全部楼层
发表于 2025-3-26 20:25:55 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 11:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表