找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Interactive Theorem Proving; 7th International Co Jasmin Christian Blanchette,Stephan Merz Conference proceedings 2016 Springer Internation

[复制链接]
楼主: Kennedy
发表于 2025-3-28 17:29:41 | 显示全部楼层
Proof of OS Scheduling Behavior in the Presence of Interrupt-Induced Concurrencynd use it to prove the principal scheduling property of the embedded, real-time . .: that the running task is always the highest-priority runnable task. The key differentiator of this verification is that the . code itself runs with interrupts ., even within the scheduler, to minimise latency. Our r
发表于 2025-3-28 21:05:24 | 显示全部楼层
发表于 2025-3-29 01:57:59 | 显示全部楼层
发表于 2025-3-29 06:21:06 | 显示全部楼层
发表于 2025-3-29 09:18:20 | 显示全部楼层
Visual Theorem Proving with the Incredible Proof Machineort graphs, which is akin to, but even more natural than, natural deduction. In particular, we describe a way to determine the scope of local assumptions and variables implicitly. Our practical classroom experience backs these claims.
发表于 2025-3-29 12:20:16 | 显示全部楼层
Two-Way Automata in Coqduction from nondeterministic two-way automata to one-way automata that leads to a doubly-exponential increase in the number of states. By adapting the work of Shepherdson and Vardi, we obtain a singly-exponential translation from nondeterministic two-way automata to DFAs. The translation employs a
发表于 2025-3-29 18:12:39 | 显示全部楼层
发表于 2025-3-29 22:14:21 | 显示全部楼层
The Flow of ODEstion needs to be at the correct level of abstraction, in order to avoid drowning in tedious reasoning about technical details. The . of an ODE, i.e., the solution depending on initial conditions, and a dedicated type of bounded linear functions yield suitable abstractions. The dedicated type integra
发表于 2025-3-30 01:14:57 | 显示全部楼层
发表于 2025-3-30 06:33:26 | 显示全部楼层
Formalizing the Edmonds-Karp Algorithmook proof, and is accessible even without being an expert in Isabelle/HOL — the interactive theorem prover used for the formalization. We then use stepwise refinement to obtain the Edmonds-Karp algorithm, and formally prove a bound on its complexity. Further refinement yields a verified implementati
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 23:35
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表