找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Intelligent Paradigms for Smart Grid and Renewable Energy Systems; B. Vinoth Kumar,P. Sivakumar,K. Vijayakumar Book 2021 The Editor(s) (if

[复制链接]
楼主: 刘兴旺
发表于 2025-3-23 12:50:56 | 显示全部楼层
Learning Automata and Soft Computing Techniques Based Maximum Power Point Tracking for Solar PV Sysnlinear, and maximum power point (MPP) is dependent on the input conditions. To extract maximum power from SPV module, MPP tracking controller is incorporated in SPV system. The main aim of this chapter is to introduce learning automata concept and its adaptability for the development of MPPT algori
发表于 2025-3-23 16:42:41 | 显示全部楼层
发表于 2025-3-23 20:05:05 | 显示全部楼层
发表于 2025-3-24 02:13:39 | 显示全部楼层
Soft Computing Techniques-Based Low Voltage Ride Through Control of Doubly Fed Induction Wind Genere coupled to grid throughout as well as post fault conditions and must source reactive power to the grid with an objective of maintaining grid voltage. This chapter focuses on the Low Voltage Ride Through (LVRT) enhancement of Doubly fed induction generator (DFIG) wind turbine especially on the cont
发表于 2025-3-24 04:52:31 | 显示全部楼层
Harmonic Current Estimation of a Non-linear Load Using Artificial Neural Network,e loads drawn on-sinusoidal current waveform. The active harmonic power filters are employed to mitigate these harmonics. The accuracy of Harmonic Current Estimation (HCE) assumes importance for the good performance of active harmonics power filter. The conventional method namely Fourier series meth
发表于 2025-3-24 10:29:00 | 显示全部楼层
发表于 2025-3-24 12:15:22 | 显示全部楼层
2524-7565 smart technologies.Serves as a reference for researchers andThis book addresses and disseminates state-of-the-art research and development in the applications of intelligent techniques for smart grids and renewable energy systems. This helps the readers to grasp the extensive point of view and the e
发表于 2025-3-24 14:54:02 | 显示全部楼层
发表于 2025-3-24 20:15:04 | 显示全部楼层
发表于 2025-3-24 23:20:12 | 显示全部楼层
2524-7565 t paradigms pertaining to the smart grid and renewable energy systems. The prospective audience would be researchers, professionals, practitioners and students from academia and industry who work in this field.978-981-15-9970-5978-981-15-9968-2Series ISSN 2524-7565 Series E-ISSN 2524-7573
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 05:34
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表