找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Intelligent Data Engineering and Automated Learning – IDEAL 2018; 19th International C Hujun Yin,David Camacho,Antonio J. Tallón-Balleste C

[复制链接]
查看: 25716|回复: 63
发表于 2025-3-21 19:42:33 | 显示全部楼层 |阅读模式
书目名称Intelligent Data Engineering and Automated Learning – IDEAL 2018
副标题19th International C
编辑Hujun Yin,David Camacho,Antonio J. Tallón-Balleste
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Intelligent Data Engineering and Automated Learning – IDEAL 2018; 19th International C Hujun Yin,David Camacho,Antonio J. Tallón-Balleste C
描述.This two-volume set LNCS 11314 and 11315 constitutes the thoroughly refereed conference proceedings of the 19th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2018, held in Madrid, Spain, in November 2018. The 125 full papers presented were carefully reviewed and selected from 204 submissions. These papers provided a timely sample of the latest advances in data engineering and automated learning, from methodologies, frameworks and techniques to applications. In addition to various topics such as evolutionary algorithms, deep learning neural networks, probabilistic modelling, particle swarm intelligence, big data analytics, and applications in image recognition, regression, classification, clustering, medical and biological modelling and prediction, text processing and social media analysis..
出版日期Conference proceedings 2018
关键词artificial intelligence; classification; clustering; computer crime; computer networks; data mining; data
版次1
doihttps://doi.org/10.1007/978-3-030-03493-1
isbn_softcover978-3-030-03492-4
isbn_ebook978-3-030-03493-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

书目名称Intelligent Data Engineering and Automated Learning – IDEAL 2018影响因子(影响力)




书目名称Intelligent Data Engineering and Automated Learning – IDEAL 2018影响因子(影响力)学科排名




书目名称Intelligent Data Engineering and Automated Learning – IDEAL 2018网络公开度




书目名称Intelligent Data Engineering and Automated Learning – IDEAL 2018网络公开度学科排名




书目名称Intelligent Data Engineering and Automated Learning – IDEAL 2018被引频次




书目名称Intelligent Data Engineering and Automated Learning – IDEAL 2018被引频次学科排名




书目名称Intelligent Data Engineering and Automated Learning – IDEAL 2018年度引用




书目名称Intelligent Data Engineering and Automated Learning – IDEAL 2018年度引用学科排名




书目名称Intelligent Data Engineering and Automated Learning – IDEAL 2018读者反馈




书目名称Intelligent Data Engineering and Automated Learning – IDEAL 2018读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:15:15 | 显示全部楼层
发表于 2025-3-22 03:09:32 | 显示全部楼层
https://doi.org/10.1007/978-3-030-03493-1artificial intelligence; classification; clustering; computer crime; computer networks; data mining; data
发表于 2025-3-22 05:03:39 | 显示全部楼层
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/i/image/469589.jpg
发表于 2025-3-22 09:28:39 | 显示全部楼层
Félix Fuentes-Hurtado,Jose Antonio Diego-Mas,Valery Naranjo,Mariano Alcañizngin eine moderne Form, die fast der heutigen entspricht, durch den französischen Wissenschaftler Pierre Simon Laplace. Sie deckt auf, warum angesehene Statistiker das Theorem 150 Jahre lang mit einem Tabu bele
发表于 2025-3-22 15:32:34 | 显示全部楼层
Juan A. Gómez-Pulido,Enrique Cortés-Toro,Arturo Durán-Domínguez,Broderick Crawford,Ricardo Soto
发表于 2025-3-22 18:25:57 | 显示全部楼层
发表于 2025-3-22 21:41:29 | 显示全部楼层
发表于 2025-3-23 02:14:33 | 显示全部楼层
Predicting Wind Energy Generation with Recurrent Neural Networks,ng in a 12 h ahead prediction. For the Time Series input we used the US National Renewable Energy Laboratory’s WIND Dataset [.], (the largest available wind and energy dataset with over 120,000 physical wind sites), this dataset is evenly spread across all the North America geography which has allow
发表于 2025-3-23 08:41:58 | 显示全部楼层
Exploring Online Novelty Detection Using First Story Detection Models,s of novelty scores, and then compare the performances of these model categories in different features spaces. Our experimental results show that the challenge of FSD varies across novelty scores (and corresponding model categories); and, furthermore, that the detection of novelty in the very popula
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 15:35
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表