找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Intelligent Data Engineering and Automated Learning -- IDEAL 2014; 15th International C Emilio Corchado,José A. Lozano,Hujun Yin Conference

[复制链接]
楼主: Malevolent
发表于 2025-3-23 13:03:39 | 显示全部楼层
Diversified Random Forests Using Random Subspaces,, giving a weight to each subspace according to its predictive power, and using this weight in majority voting. Experimental study on 15 real datasets showed favourable results, demonstrating the potential of the proposed method.
发表于 2025-3-23 17:11:40 | 显示全部楼层
Multi-step Forecast Based on Modified Neural Gas Mixture Autoregressive Model,g patterns and its suitability for various step-ahead predictions. Experimental results on several financial time series and benchmark data demonstrate the effectiveness of proposed method and markedly improvement performances over many existing neural networks.
发表于 2025-3-23 21:50:18 | 显示全部楼层
LBP and Machine Learning for Diabetic Retinopathy Detection, patterns (LBP) to extract local features, while in the second stage, we have applied artificial neural networks, random forest and support vector machines for the detection task. Preliminary results show that random forest was the best classifier with 97.46% of accuracy, using a data set of 71 images.
发表于 2025-3-24 02:11:33 | 显示全部楼层
发表于 2025-3-24 03:42:44 | 显示全部楼层
发表于 2025-3-24 08:49:02 | 显示全部楼层
发表于 2025-3-24 11:23:08 | 显示全部楼层
Object-Neighbourhood Clustering Ensemble Method,tasets. The results show that our ensemble method outperforms the co-association method, when the Average linkage is used. Furthermore, the results show that our ensemble method is more accurate than the baseline algorithm, and this indicates that the clustering ensemble method is more consistent and reliable than a single clustering algorithm.
发表于 2025-3-24 16:12:07 | 显示全部楼层
发表于 2025-3-24 19:22:32 | 显示全部楼层
发表于 2025-3-24 23:48:24 | 显示全部楼层
0302-9743 optimization, regression, classification, clustering, biological data processing, text processing, and image/video analysis.978-3-319-10839-1978-3-319-10840-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 05:21
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表