找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation; Theory and Practice Ravinesh C. Deo,Pijush Samui,Zaher Mundh

[复制链接]
查看: 34666|回复: 63
发表于 2025-3-21 18:05:52 | 显示全部楼层 |阅读模式
书目名称Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation
副标题Theory and Practice
编辑Ravinesh C. Deo,Pijush Samui,Zaher Mundher Yaseen
视频video
概述Presents novel applications of artificial neural networks to design practical alert systems for natural hazards.Offers concise theories and case studies on advanced data analytics for real-life decisi
丛书名称Springer Transactions in Civil and Environmental Engineering
图书封面Titlebook: Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation; Theory and Practice  Ravinesh C. Deo,Pijush Samui,Zaher Mundh
描述This book highlights cutting-edge applications of machine learning techniques for disaster management by monitoring, analyzing, and forecasting hydro-meteorological variables. Predictive modelling is a consolidated discipline used to forewarn the possibility of natural hazards. In this book, experts from numerical weather forecast, meteorology, hydrology, engineering, agriculture, economics, and disaster policy-making contribute towards an interdisciplinary framework to construct potent models for hazard risk mitigation. The book will help advance the state of knowledge of artificial intelligence in decision systems to aid disaster management and policy-making. This book can be a useful reference for graduate student, academics, practicing scientists and professionals of disaster management, artificial intelligence, and  environmental sciences. 
出版日期Book 2021
关键词disaster risk management; artificial intelligence; machine learning algorithms; environmental sciences;
版次1
doihttps://doi.org/10.1007/978-981-15-5772-9
isbn_softcover978-981-15-5774-3
isbn_ebook978-981-15-5772-9Series ISSN 2363-7633 Series E-ISSN 2363-7641
issn_series 2363-7633
copyrightSpringer Nature Singapore Pte Ltd. 2021
The information of publication is updating

书目名称Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation影响因子(影响力)




书目名称Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation影响因子(影响力)学科排名




书目名称Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation网络公开度




书目名称Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation网络公开度学科排名




书目名称Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation被引频次




书目名称Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation被引频次学科排名




书目名称Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation年度引用




书目名称Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation年度引用学科排名




书目名称Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation读者反馈




书目名称Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:48:26 | 显示全部楼层
发表于 2025-3-22 03:48:06 | 显示全部楼层
Energy Dissipation in Rough Chute: Experimental Approach Versus Artificial Intelligence Modeling,ccurs at the slopes of 16.4 and 35°, respectively. CCNN model yields excellent performance for predicting of relative energy loss (. = 0.983 and RMSE = 0.02). The methodologies are adaptable in real decision support systems for disaster risk mitigation.
发表于 2025-3-22 04:57:41 | 显示全部楼层
Spatial Modeling of Soil Erosion Susceptibility with Support Vector Machine,the SVM model performed well in both training (AUC = 84.1% and TSS = 0.651) and validation (AUC = 81.2% and TSS = 0.62) steps. Therefore, SVM is capable to accurately model soil erosion in data-scarce regions. The adopted methodology can be used as an efficient approach for land-use planning and adopting mitigation strategies.
发表于 2025-3-22 11:55:03 | 显示全部楼层
2363-7633 case studies on advanced data analytics for real-life decisiThis book highlights cutting-edge applications of machine learning techniques for disaster management by monitoring, analyzing, and forecasting hydro-meteorological variables. Predictive modelling is a consolidated discipline used to forewa
发表于 2025-3-22 14:27:31 | 显示全部楼层
Bayesian Markov Chain Monte Carlo-Based Copulas: Factoring the Role of Large-Scale Climate Indices monthly FI that can be predicted at least four months ahead using SOI information. These advanced flood prediction models, presented in this chapter, are indeed imperative tools for civil protection and important to early warning and risk reduction systems.
发表于 2025-3-22 20:14:52 | 显示全部楼层
发表于 2025-3-22 22:24:27 | 显示全部楼层
2363-7633 seful reference for graduate student, academics, practicing scientists and professionals of disaster management, artificial intelligence, and  environmental sciences. 978-981-15-5774-3978-981-15-5772-9Series ISSN 2363-7633 Series E-ISSN 2363-7641
发表于 2025-3-23 03:31:16 | 显示全部楼层
Intelligent Data Analytics for Decision-Support Systems in Hazard MitigationTheory and Practice
发表于 2025-3-23 08:05:13 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-6 04:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表